DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

News & Publications
Home › News Releases › Mechanisms of Plant-Fungi Symbiosis Characterized by DOE Joint Genome Institute, Collaborators

March 5, 2008

Mechanisms of Plant-Fungi Symbiosis Characterized by DOE Joint Genome Institute, Collaborators

WALNUT CREEK, CA—Plants gained their ancestral toehold on dry land with considerable help from their fungal friends. Now, millennia later, that partnership is being exploited as a strategy to bolster biomass production for next-generation biofuels. The genetic mechanism of this kind of symbiosis, which contributes to the delicate ecological balance in healthy forests, also provides insights into plant health that may enable more efficient carbon sequestration and enhanced phytoremediation—using plants to clean up environmental contaminants. These prospects stem from the genome analysis of the symbiotic fungus Laccaria bicolor, generated by the U.S. Department of Energy Joint Genome Institute (DOE JGI) and collaborators from INRA, the National Institute for Agricultural Research in Nancy, France, and published March 6 in the journal Nature. This international team effort also involved contributions from 16 institutions, including Oak Ridge National Laboratory; Ghent University, Belgium; Lund University, Sweden; Göttingen University, Germany; CNRS-Aix-Marseille University, France; Nancy University, France; and the University of Alabama, Huntsville.

Laccaria bicolor

Fruiting bodies of L. bicolor colonizing seedlings of Douglas fir (photograph courtesy of D. Vairelles and as seen in the Nature paper.)

Trees’ ability to generate large amounts of biomass or store carbon is underpinned by their interactions with soil microbes known as mycorrhizal fungi, which excel at procuring necessary, but scarce, nutrients such as phosphate and nitrogen. Most of these nutrients are transferred to the growing tree. When Laccaria bicolor establishes a partnership with plant roots, a mycorrhizal root is created. The fungus within the root is protected from competition with other soil microbes and gains preferential access to carbohydrates within the plant. Thus, the mutualistic relationship is established.

“Forests around the world rely on the partnership between plant roots and soil fungi and the environment they create—the rhizosphere,” said Eddy Rubin, DOE JGI Director. “The Laccaria genome represents a valuable resource, the first of a series of tree community genomics projects to have passed through our production sequencing line. These community resources promise to advance a systems approach to forest genomics.”

Rubin indicates that by using DNA sequence to survey the forest ecosystem, from the plants to symbiotic and pathogenic fungi, researchers can ultimately optimize the conditions under which a biomass plantation would thrive. “We now have the opportunity to gain fundamental insights into plant development and growth as related to their intimate interaction which symbiotic fungi. These insights will lead to bolstered biomass productivity and improved forests.”

Laccaria bicolor occurs frequently in the birch, fir, and pine forests of North America and is a common symbiont of Populus, the poplar tree whose genome was determined by the JGI in 2006. The analysis of the 65-million-base Laccaria genome, the largest fungal genome sequenced to date, yielded 20,000 predicted protein-encoding genes, almost as many as in the human genome. In sifting through these data, researchers have discovered many unexpected features, including an arsenal of small secreted proteins (SSPs), several of which are only expressed in tissues associated with symbiosis. The most prominent SSP accumulates in the extending hyphae, the tips of the fungus that colonize the roots of the host plant.

“We believe that the proteins specific to this host/fungus interface play a decisive role in the establishment of symbiosis,” said Francis Martin, the Nature study’s lead author. This genome exploration led Martin and his CNRS-Marseille University and DOE JGI colleagues to the unexpected observation that the genome of Laccaria lacks the enzymes involved in degradation of the carbohydrate polymers of plant cell walls but maintains the ability to degrade non-plant cell walls—which may account for Laccaria’s protective capacity. These observations point towards the dual life that mycorrhizal fungi like Laccaria possess, that is, the ability to grow in soil fending off pathogens and using decaying organic matter while serving as a custodian of living plant roots.

The genome, Martin said, shows a large number of new and expanded gene families compared with other fungi. Many of these families are involved in signaling and other processes that drive the complex transition between two distinct lifestyles of Laccaria: the benign saprotroph, able to use decaying matter of animal and bacterial origins, versus the symbiont, living in mutually profitable harmony with plant roots.

The team also discovered new classes of genes that may be candidates for the complex communication that must occur between the players in the host/plant subsoil arena during fungal development. They report that fungi play a critical role in plant nutrient use efficiency by translocating nutrients and water captured in soil pores inaccessible to roots of the host plant.

“The Laccaria genome sequence, its analysis, associated genomics, and bioinformatics tools provide an unprecedented opportunity to identify the key components of organism-environment interactions that modulate ecosystem responses to global change and increased nutrient input needed for faster growth, said Martin. “By examining and manipulating patterns of gene expression, we can identify the genetic control points that regulate plant growth and plant-mutualist response in an effort to better understand how these interactions control ecosystem function.”

Mycorrhizae are critical elements of the terrestrial ecosystems, Martin said, since approximately 85 percent of all plant species, including trees, are dependent on such interactions to thrive. Mycorrhizae significantly improve photosynthetic carbon assimilation by plants.

“Host trees like Populus are able to harness this formidable web of mycorrhizal hyphae that permeates the soil and leaf litter and coax a relationship for their mutual nutritional benefit,” said co-author DOE JGI and Oak Ridge National Laboratory researcher Jerry Tuskan. “This process is absolutely critical to the success of the interactions between the fungi and the roots of the host plant so that an equitable exchange of nutrients can be achieved.” The DOE JGI and its collaborators have now embarked on characterizing several other poplar community symbionts that will provide a more comprehensive understanding of the biological community of the poplar forest. These include Glomus—a second plant symbiotic fungus, Melampsora—a leaf pathogen, and several plant endophytes—bacteria and fungi that live inside the poplar tree.

“DOE JGI’s expanding portfolio of community genomes provides the researchers with a set of resources that can be used to map out the processes by which fungi colonize wood and soil litter. These fungi interact with living plants within their ecosystem in order to perform vital functions in the carbon and nitrogen cycles that are so fundamental to sustainable plant growth,” said Tuskan.

The DOE JGI Laccaria effort was led by Igor Grigoriev. Other authors include Andrea Aerts, Erika Lindquist, Asaf Salamov, Harris Shapiro, Peter Brokstein, Chris Detter (Los Alamos National Laboratory), the DOE JGI Production Genomics Facility sequencing team led by Susan Lucas, and partners at the Stanford Human Genome Center, Jane Grimwood and Jeremy Schmutz.

Projects are submitted to DOE JGI through the Community Sequencing Program.

***

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories—Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest—along with the Stanford Human Genome Center to advance genomics in support of the DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI’s Walnut Creek, CA, Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

An Automated Tool for Assessing Virus Data Quality

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

A One-Stop Shop for Analyzing Algal Genomes

Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)

Uncovering Novel Genomes from Earth’s Microbiomes

Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)

2021 JGI Proposal Call Brings New Investigators into Community Science Program

Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)

Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)

The More the Merrier: Making the Case for Plant Pan-genomes

Brachypodium distachyon, the model species for temperate cereals and biofuel crop grasses with a growing pangenome of one hundred genomes. Spain: Huesca, Ibieca, San Miguel de Foces. (Photography credits: Pilar Catalán)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California