DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

All JGI Features
Home › Archives for FY 2020
Page 7 of 7« First«...34567

October 1, 2019

Gene Atlas of a Nitrogen-Fixing Legume Symbiont

A transmission electron micrograph of Sinorhizobium meliloti strain 1021. The scale bar represents 2 microns. (George diCenzo)We will use a high-throughput approach to help fill-in gaps in knowledge of the functional properties of microbes and their genes, laying a solid foundation for researchers hoping to engineer bacteria with improved or novel traits. [Read More]

October 1, 2019

Most Abundant Diatom Genus in the World’s Ocean

Chaetoceros is the most abundant and cosmopolitan diatom genus in the world’s ocean, so these genomes will enable population genetics studies and allow exploration of the genetic and epigenetic contributions to species adaptation and evolution. [Read More]

October 1, 2019

Inter-organismal Interactions in the Rumen Ecosystem

We propose to generate data that would provide us with a better understanding of the role of different microorganisms involved methanogenesis in the rumen ecosystem and the foundation to develop new strategies for methane mitigation from ruminants. Ruminant animals are one of major anthropogenic sources of the highly potent greenhouse gas methane and advanced methane mitigation strategies would have a significant impact on the global methane emission and the therefore on climate change. This aligns fully with DOE’s mission to reduce the anthropogenic carbon footprint. [Read More]

October 1, 2019

Expanding Metabolic Understanding of C- and S- Cycling Microbes

Is there more biochemistry to be discovered in the microbial world? How universal is biochemistry between distantly related bacteria? A massive amount of microbial genome data exists, yet every new sequence finds genes for which we cannot predict a concrete function. This proposal seeks to combine genomic information with direct detection of metabolites to answer these questions and provide a path for assigning gene functions in two distantly related microbial groups that play key roles in carbon and sulfur cycling in multiple ecosystems across the planet. [Read More]

October 1, 2019

Fungal Root Endophytes of Soybean

This project investigates fungal root endophytes of the oilseed crop soybean for their potential to deter biotic stresses from root pathogen such as the soybean cyst nematode and the sudden death syndrome fungal root-rot pathogen. [Read More]

October 1, 2019

Wood Decay by Soft Rot Fungi

This project seeks to ascertain the mechanisms of lignocellulose deconstruction employed by these soft rot fungi. [Read More]

October 1, 2019

Scaling Microbial Traits From Genomes to Watersheds

Soil core showing redoximorphic features sampled from watershed zone of high vegetation nitrogen uptake. (Courtesy of Eoin Brodie)Using remote sensing, metagenomics and machine learning, we are building new ways to predict of how plant and microbial metabolism interact to influence biogeochemistry across watersheds in the headwaters of the Colorado River. [Read More]

October 1, 2019

Microbial Roles in Plant Drought Tolerance in the Sahel

The Sahel region in West Africa is highly vulnerable to drought, endangering the livelihood of millions of millet subsistence farmers in the region. However, a solution has been revealed; when farmers grown millet in close proximity with native woody shrub gueira, the millet has greater biomass and yields. We predict that the millet-associated microbial community is influenced by the shrub such that the microbes are able to confer better drought resistance to their host millet in the presence of the shrub. We will characterize the metagenomes of millet to test this hypothesis. [Read More]

October 1, 2019

Plant-Microbe Interactions of a Wood Decay Fungus

This research project focuses on elucidating the plant-microbe interactions of the wood decay fungus Perenniporia fraxinea, a serious pathogen of hardwood trees. Multi-omics analyses will reveal the comprehensive mechanisms and key fungal genes involved in the wood infection and degradation processes will be identified. Furthermore, key fungal proteins involved in the processes will be biochemically characterized and subjected to chemical screening in our efforts to identify specific inhibitors with potential as novel wood-protective agents against P. fraxinea and related wood-decay fungi. [Read More]
Page 7 of 7« First«...34567

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California