DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › Human Chromosome 5 Final Sequence Analysis Released to Public

September 15, 2004

Human Chromosome 5 Final Sequence Analysis Released to Public

WALNUT CREEK, CA–Four years after publicly revealing the official draft human genetic sequence, researchers have reached the halfway point in dotting the i’s and crossing the t’s of the genetic sentences describing how to build a human. The newly finalized chromosome 5 is the 12th chromosome polished off, with 12 more to go. As the new sequence reveals, this chromosome is a genetic behemoth containing key disease genes and a wealth of information about how humans evolved.

Chromosome 5 is the second of three chromosomes that the Department of Energy Joint Genome Institute (JGI) has finalized in collaboration with colleagues at the Stanford Human Genome Center (SHGC). The final sequence analysis will be published in the Sept. 16 issue of Nature.

“This extremely accurate sequence will be a powerful tool for scientists trying to understand human disease,” said Secretary of Energy Spencer Abraham. “I’m pleased that the Department of Energy, which launched the human genome project in the mid-1980s, could help make this important contribution.”

Lawrence Berkeley, Lawrence Livermore and Los Alamos national laboratory scientists and staff comprise the JGI, one of the world’s largest and most productive public genome sequencing centers. JGI, in partnership with SHGC, completed the sequencing of three of the human genome’s chromosomes–numbers 5, 16 and 19–which together contain some 3,000 genes, including those implicated in forms of kidney disease, prostate and colorectal cancer, leukemia, hypertension, diabetes and atherosclerosis. The chromosome 19 sequence was published in the April 1, 2004, issue of Nature.

“I am confident that the interesting features that we have identified from this sequence information are data that the research community can trust and put to good use,” said Richard M. Myers, Professor and Chair of Genetics, who is also the director of the Stanford Human Genome Center.

Chromosome 5, the largest to be completed thus far, is made up of 180.9 million genetic letters–the As, Ts, Gs, and Cs that compose the genetic alphabet. Those letters spell out the chromosome’s 923 genes, including 66 genes that are known to be involved in human disease. Another 14 diseases seem to be caused by chromosome 5 genes, but they haven’t yet been linked to a specific gene. Other chromosome 5 genes include a cluster that codes for interleukins, molecules that are involved in immune signalling and maturation and are also implicated in asthma.

The spaces between the genes are as important as the genes themselves, said Eddy Rubin, JGI’s director. “In addition to disease genes, other important genetic motifs gleaned from vast stretches of noncoding sequence have been found on Chromosome 5. Comparative studies conducted by our scientists of the vast gene deserts, where it was thought there was little of value have shown that these regions, conserved across many mammals, actually have powerful regulatory influence.”

These gene-free stretches were previously considered “junk DNA,” but in recent years those seemingly barren regions have taken on greater prominence as researchers have learned that they can control the activity of distant genes. Some of the noncoding regions have also stayed remarkably consistent compared with those in mice or fish rather than accumulating mutations over the course of evolution.

“If you have such large human regions that stay conserved over vast evolutionary distances, it strongly supports the idea that they must contain something important,” said Jeremy Schmutz, the informatics group leader at SHGC. Any mutation that appeared in those conserved regions was likely to have either killed the animal or made it less able to reproduce, preventing the mutation from making it to the next generation. So far, nobody has shown what role the conserved regions play. “What this says is that we don’t know as much about this conserved stuff as we think we do,” Schmutz said.

Hidden in the chromosome 5 sequence are clues to how humans evolved after branching away from chimpanzees. On average, the chromosome is more than 99 percent similar between chimpanzees and humans, with the greatest similarity found in genes that cause diseases when mutated.

Despite similarities in the overall sequence, the human and chimpanzee chromosomes compared have some structural differences, including one large section that is flipped backward in humans compared to chimps. Such an inversion makes it impossible for the two chromosomes to pair up when the cell divides to create sperm and eggs. Over time, that incompatibility could have driven a reproductive wedge between the evolving populations.

Moving evolutionarily further away, about one-third of chromosome 5 is similar to a chicken chromosome that determines the chicken’s sex, much like the X and Y chromosomes in humans. This finding backs up previous research suggesting that before mammals and birds split 300 million years ago, the sex chromosomes had not yet evolved. After the split, mammals and birds developed their own methods of creating males and females.

One duplicated region on chromosome 5 could eventually help explain how spinal muscular dystrophy is inherited. Researchers had known that deletions in the gene for survival of motor neurons, (SMN) caused the disease, but people with the same deletion can have much more or less severe forms of the disease. It turns out that the region contains many duplications and other rearrangements and varies considerably between people. Schmutz said that, with the sequence for this region in hand, researchers can now study how variations in the number of deletions or repetitions influences the disease severity.

For the chromosome 5 effort at JGI, Susan Lucas led the sequencing and Joel Martin the mapping and analysis efforts. Additional Stanford contributors included Jane Grimwood, the finishing group leader, and Mark Dickson, the production sequence group leader.

The DOE launched the historic quest to discover the human genetic blueprint and also developed cost-effective sequencing and computational technologies that enable on-going contributions to the expanding discipline of genomics. Information about these achievements can be found on the partner sites:

The DOE Joint Genome Institute (JGI): http://www.jgi.doe.gov

The Stanford Human Genome Center (SHGC): http://www-shgc.stanford.edu

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California