DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Waves of Berkeley Lab Responders Deploy Omics to Track Deepwater Horizon Oil Spill Cleanup Microbes

June 21, 2012

Waves of Berkeley Lab Responders Deploy Omics to Track Deepwater Horizon Oil Spill Cleanup Microbes

In the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico two years ago, various strategies were deployed to prevent 4.9 million barrels of light crude oil from fouling the waters and reaching the shores. A team of Lawrence Berkeley National Laboratory (Berkeley Lab) researchers found that nature also played a role in the dispersal process as marine microbial communities responded to the oil plume that made its way from the wellhead at a depth of 5,000 feet to the surface of the water.

news_12_06_21-1

A surface slick in the Gulf of Mexico, taken ~1.5 km from the Deepwater Horizon wellhead (Olivia Mason, LBNL).

“There was oil on the surface and oil below, but no oil in between,” said microbial ecologist Terry Hazen, former head of the Ecology Department at Berkeley Lab and now holder of the University of Tennessee-Oak Ridge National Laboratory Governor’s Chair. In a report published a few months after the oil spill, Hazen’s team reported that the microbes in the water were partly responsible for the oil’s disappearance. While several studies have since confirmed that various microbes played a role in the dispersal of the oil in the Gulf, understanding the composition of the microbial community and the roles of its members has not fully achieved until now.

To learn more about the microbial community’s response to the oil spill, researchers led by Berkeley Lab senior scientist Janet Jansson availed themselves of the expertise and resources at two of the Lab’s national user facilities, the U.S. Department of Energy Joint Genome Institute (DOE JGI) and the Advanced Light Source (ALS). The work done by the Lab’s disaster response team demonstrated Ernest Lawrence’s pioneering vision of team science. The findings, published in two separate articles, track a series of microbial species dominating the community in the waters at various time points to remove different fractions of the oil.

As reported in an article published online June 21, 2012 in The ISME Journal, the team describes using a combination of genomics techniques to study the way the microbes responded to the influx of oil. They focused on the community’s expressed functional information or metatranscriptome. In addition, they isolated single cells to identify the predominant microbial members in the deep ocean oil plume. Using the latter technique, they were able to assemble a draft genome of what they say is the first deep-sea, oil-eating bacterium from a single cell.

news_12_06_21-2

Study first author Olivia Mason using the CTD Rosette to collect water samples from the deep-sea plume (Eric Dubinsky, LBNL)

In a program funded by the Energy Biosciences Institute (EBI), Jansson’s postdoctoral fellow Olivia Mason collected deep water samples from the oil plume that appeared during the Deepwater Horizon spill 1.5 kilometers and 11 km from the wellhead and the samples were analyzed by a team of scientists back at the Berkeley Lab. Mason extracted DNA and RNA from the samples and at the DOE JGI, researchers led by Microbial Program head Tanja Woyke and Metagenome Program head Susannah Tringe subjected the samples to deep sequencing approaches, generating billions of bases of data for each sample. Mason analyzed the resulting metagenomic (DNA) and metatranscriptomic (RNA) sequences to reveal genes for functions such as hydrocarbon degradation. Data analysis revealed an abundance of genes involved in the degradation of alkanes, as well as genes involved in degradation of aromatic compounds. A separate group under DOE JGI Microbial Program head Tanja Woyke worked to isolate and sequence three cells of Oceanospirillales bacteria, two of which they were able to co-assemble into a draft genome.

Mason then searched against a database of microbial proteins known to be involved in the pathways for breaking down hydrocarbons. The results suggested that the microbes responding to the plume were predominantly Oceanospirillales bacteria, able to break down cyclohexanes.

news_12_06_21-3

Filtration of surface samples, with the filter apparatus that Mason and colleagues used to concentrate samples. (Eric Dubinsky, LBNL).

Jansson said that the results suggest a succession of microbes acted on the oil spill, degrading different fractions. “I think what we’re seeing are these waves of community members and this is known to happen in the ocean. We probably have a bloom of alkane degraders that were present when we sampled early in the spill history. In later expeditions they found methane degraders or propane degraders suggesting that there was a succession in the community and their properties,” she said.

Adding credence to their hypothesis are the results of a simulation Jansson and her colleagues reported in a separate study published May 23, 2012 in Environmental Microbiology. The researchers modeled the oil plume scenario using uncontaminated water from the Gulf that was supplemented with oil collected during the spill, and dispersants. The team employed DNA sequencing at the DOE JGI to monitor the composition of the microbial community that was responsible for breakdown of the hydrocarbons. The distribution of “flocs,” clusters of microorganisms, oil, and oil degradation products were also studied with the help of Berkeley Lab’s Advanced Light Source, a DOE Office of Science-supported facility that  offers a beamline — ALS Infrared Beamline 1.4 — that produces infrared spectra ideal for studying living bacteria individually or in small groups. “The aim was to enrich natural deep sea bacteria from the Gulf of Mexico on oil in the laboratory so that we could study them,” she said, “and the results were the same as what was seen in nature.” In addition, they successfully cultivated an oil-degrading Colwellia bacterium from the oil enrichments that had sequence similarity to those reported from the oil plume.

However, as the Oceanospirillales microbe that was sequenced using single cell sequencing remained uncultivated, Jansson said that further studies such as those conducted in the second study will have to wait until an isolate can be obtained. In the meantime, one direction the researchers have taken is to conduct a metagenomic analysis of sediment samples collected near the oil rig both during and after the Deepwater Horizon spill and of sediment samples from natural oil seeps.

Jansson said that combining the metagenomic, metatranscriptomic and single-cell sequencing techniques accessed through the collaboration with the DOE JGI provided a uniquely comprehensive perspective on the findings. “When we compared the RNA to the DNA we saw enrichment in the same kinds of genes for certain compounds. For example, the genes for degradation of cyclohexane were very abundant in the plume and they were being expressed. It was essential to have the expression data because without that, the DNA might be there but we’d be at a loss to determine whether there was any relevant functional activity,” she said. “This shows what’s really going on when and where you take your samples. We found that the genes were there, that specific classes of genes were highly expressed, and then they were also found in the single cell that we sequenced—all together it made for a really coherent story that can serve as a model for future studies.”

The work reported in ISME Journal was supported by the Energy Biosciences Institute (EBI) at the University of California, Berkeley. EBI is a partnership led by the University of California (UC) Berkeley and including Berkeley Lab and the University of Illinois that is funded by BP. The work reported in Environmental Microbiology was supported by EBI and the Danish Research Council.

Publication: Mason O et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6, 1715–1727 (2012). https://doi.org/10.1038/ismej.2012.59

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California