Published in:
Protist 173(1) , 125853 ( 2021)
Author(s):
DOI:
10.1016/j.protis.2021.125853
Abstract:
Symbiotic relationships between heterotrophic and phototrophic partners are common in microbial eukaryotes. Among Arcellinida (Amoebozoa) several species are associated with microalgae of the genus Chlorella (Archaeplastida). So far, these symbioses were assumed to be stable and mutualistic, yet details of the interactions are limited. Here, we analyzed 22 single-cell transcriptomes and 36 partially-sequenced genomes of the Arcellinida morphospecies Hyalosphenia papilio, which contains Chlorella algae, to shed light on the amoeba-algae association. By characterizing the genetic diversity of associated Chlorella, we detected two distinct clades that can be linked to host genetic diversity, yet at the same time show a biogeographic signal across sampling sites. Fluorescence and transmission electron microscopy showed the presence of intact algae cells within the amoeba cell. Yet analysis of transcriptome data suggested that the algal nuclei are inactive, implying that instead of a stable, mutualistic relationship, the algae may be temporarily exploited for photosynthetic activity before being digested. Differences in gene expression of H. papilio and Hyalosphenia elegans demonstrated increased expression of genes related to oxidative stress. Together, our analyses increase knowledge of this host-symbiont association and reveal 1) higher diversity of associated algae than previously characterized, 2) a transient association between H. papilio and Chlorella with unclear benefits for the algae, 3) algal-induced gene expression changes in the host.