Published in:
mSystems 9(4) , e00064-24 ( 2024)
Author(s):
DOI:
10.1128/msystems.00064-24
Abstract:
During prolonged resource limitation, bacterial cells can persist in metabolically active states of non-growth. These maintenance periods, such as those experienced in stationary phase, can include upregulation of secondary metabolism and release of exometabolites into the local environment. As resource limitation is common in many environmental microbial habitats, we hypothesized that neighboring bacterial populations employ exometabolites to compete or cooperate during maintenance and that these exometabolite-facilitated interactions can drive community outcomes. Here, we evaluated the consequences of exometabolite interactions over the stationary phase among three environmental strains: Burkholderia thailandensis E264, Chromobacterium subtsugae ATCC 31532, and Pseudomonas syringae pv. tomato DC3000. We assembled them into synthetic communities that only permitted chemical interactions. We compared the responses (transcripts) and outputs (exometabolites) of each member with and without neighbors. We found that transcriptional dynamics were changed with different neighbors and that some of these changes were coordinated between members. The dominant competitor B. thailandensis consistently upregulated biosynthetic gene clusters to produce bioactive exometabolites for both exploitative and interference competition. These results demonstrate that competition strategies during maintenance can contribute to community-level outcomes. It also suggests that the traditional concept of defining competitiveness by growth outcomes may be narrow and that maintenance competition could be an additional or alternative measure.
IMPORTANCE: Free-living microbial populations often persist and engage in environments that offer few or inconsistently available resources. Thus, it is important to investigate microbial interactions in this common and ecologically relevant condition of non-growth. This work investigates the consequences of resource limitation for community metabolic output and for population interactions in simple synthetic bacterial communities. Despite non-growth, we observed active, exometabolite-mediated competition among the bacterial populations. Many of these interactions and produced exometabolites were dependent on the community composition but we also observed that one dominant competitor consistently produced interfering exometabolites regardless. These results are important for predicting and understanding microbial interactions in resource-limited environments.