DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Diatom Genome Reveals Key Role in Biosphere’s Carbon Cycle

September 30, 2004

Diatom Genome Reveals Key Role in Biosphere’s Carbon Cycle

WALNUT CREEK, CA–The first genetic instruction manual of a diatom, from a family of microscopic ocean algae that are among the Earth’s most prolific carbon dioxide assimilators, has yielded important insights on how the creature uses nitrogen, fats, and silica to thrive.

TpseuSEM

Thalassiosira pseudonana, like other diatoms, builds an exquisite species-specific frustule,or cell wall. Photo by Nils Kröger, Universität Regensburg.

The diatom DNA sequencing project, funded by the U.S. Department of Energy (DOE) and conducted at the DOE Joint Genome Institute, provides insight into how the diatom species Thalassiosira pseudonana prospers in the marine environment while it contributes to absorbing the major greenhouse gas CO2, in amounts comparable to all the world’s tropical rain forests combined.

“This critical information enables us to better understand the vital role that diatoms and other phytoplankton play in mediating global warming,” says Dan Rokhsar, who heads computational genomics at the JGI and is one of the co-authors of a research article in the Oct. 1 issue of Science. “Now that we have a glimpse at the inner workings of diatoms, we’re better positioned to understand how changes in their population numbers will translate into environmental changes and the global carbon management picture.”

“These organisms are incredibly important in the global carbon cycle,” says Virginia Armbrust, a University of Washington associate professor of oceanography and lead author of the Science paper. Together, the single-celled organisms generate as much as 40 percent of the 50 billion to 55 billion tons of organic carbon produced each year in the sea and in the process use carbon dioxide and produce oxygen. And they are an important food source for many other marine organisms.

Scientists would like to better understand how these organisms react to changes in sea temperatures, the amount of light penetrating the oceans, and nutrients.

“Oceanographers thought we understood how diatoms use nitrogen, but we discovered they have a urea cycle, something no one ever suspected,” Armbrust says. A urea cycle is a nitrogen waste pathway found in animals and has never before been seen in a photosynthetic eukaryote like a diatom, she says. Nitrogen is crucial for diatom growth and is often in short supply in seawater, depending on ocean conditions. The genome work revealed that the diatom Thalassiosira pseudonana has the genes to produce urea-cycle enzymes that may help to reduce its dependence on nitrogen from the surrounding waters.

The genome work also shed additional light on how this diatom species uses fats, or lipids, which it is known to store in huge amounts.

“Learning the actual pathways they use to metabolize their fats helps explain the ability of diatoms to withstand long periods with little sunlight–even to overwinter–and then start growing really rapidly once they return to sunlight,” she says.

Three or four microns in width–as many as 70 could fit in the width of a human hair–Thalassiosira pseudonana is among the smallest diatoms. Like its brethren, it is encased by a frustule, a rigid cell wall delicately marked with pores in patterns distinctive enough for scientists to tell the species apart. Another new finding reported in Science concerns the unusual way the diatom metabolizes silicon to form its characteristically ornate silica frustule.

“Diatoms can manipulate silica in ways that nanotechnologists can only dream about. If we understood how they can design and build their patterned frustule as part of their biology, perhaps this could be adapted by humans,” Rokhsar says.

Scientists on the project, which includes 46 researchers from 26 institutions, also considered the evolutionary implications revealed by the genomic work. The research provided direct genetic confirmation of a hypothesis that diatoms evolved when a heterotroph, a single-cell microbe, engulfed what scientists say was likely a kind of red alga. The two became one organism, an arrangement called endosymbiosis, and swapped some genetic material to create a new hybrid genome.

“This project helps illustrate the amazing diversity of life on our planet,” Armbrust says. “Diatoms display features traditionally thought to be restricted to animals and other features thought to be restricted to plants. Diatoms, with complete disregard for these presumed boundaries, have mixed and matched different attributes to create an incredibly successful microorganism. It’s exciting to imagine the novelty in the oceans that still awaits our discovery.”

Other JGI co-authors were Diego Martinez, Nicholas Putnam, J. Chris Detter, Tijana Glavina, David Goodstein, Uffe Hellsten, Susan Lucas, Mónica Medina, and Paul Richardson.

The U.S. Department of Energy Joint Genome Institute was established in 1997 as part of the Human Genome Project by combining the DNA sequencing resources from the three DOE national laboratories managed by the University of California: Lawrence Berkeley and Lawrence Livermore national laboratories in California, and Los Alamos National Laboratory in New Mexico. JGI has since extended the scope of its sequencing to whole-genome projects devoted to microbes and microbial communities, model system vertebrates, aquatic organisms, and plants. Funding for the JGI is predominantly from the Office of Biological and Environmental Research in the DOE Office of Science.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California