DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › DOE JGI Director Eddy Rubin Highlights the Genomics of Plant-based Biofuels in the Journal Nature

August 13, 2008

DOE JGI Director Eddy Rubin Highlights the Genomics of Plant-based Biofuels in the Journal Nature

WALNUT CREEK, CA—Genomics is accelerating improvements for converting plant biomass into biofuel—as an alternative to fossil fuel for the nation’s transportation needs, reports Eddy Rubin, Director of the U.S. Department of Energy Joint Genome Institute (DOE JGI), in the August 14 edition of the journal Nature. In “Genomics of cellulosic biofuels,” Rubin lays out a path forward for how emerging genomic technologies will contribute to a substantially different biofuels future as compared to the present corn-based ethanol industry—and in part mitigate the food-versus-fuel debate. The Nature Review is available for download (by subscription) at http://www.nature.com/.

lores_mod_eddy-switchgrass6

Eddy Rubin, Director of the U.S. Department of Energy Joint Genome Institute (DOE JGI)

“The Apollo moon shot and the Human Genome Project rallied support for massive R&D efforts that created the capabilities to overcome obstacles that were not contemplated at the outset of these initiatives,” says Rubin.  “Similarly, today’s barriers to improving biofuels are significant, but genetics and genomics can catalyze progress towards delivering, in the not-too-distant future, economically-viable and more socially acceptable biofuels based on lignocellulose.”

While Rubin acknowledges that this strategy is in its infancy, rapid progress is being made.

“Over the past 10,000 years, wild plant species were selected for their desirable traits resulting in today’s highly productive food crops. We simply don’t have thousands of years in the face of the energy and climate challenges, so by applying the power of genomics to these problems, we are seeking to speed up the domestication of energy crops and the technologies for converting them to suitable biofuels as a more carbon-neutral approach to meeting part of our transportation needs.”

In the Nature Review, Rubin describes the processes entailed in biofuel production from lignocellulose: the harvesting of biomass, pretreatment and saccharification, which results in the deconstruction of cell wall polymers into component sugars, and then the conversion of those sugars into biofuels through fermentation.  Each step, he says, offers an opportunity for genomics to play a significant role.

“With the data that we are generating from plant genomes we can home in on relevant agronomic traits such as rapid growth, drought resistance, and pest tolerance, as well as those that define the basic building blocks of the plants cell wall—cellulose, hemicellulose and lignin.  Biofuels researchers are able to take this information and design strategies to optimize the plants themselves as biofuels feedstocks—altering, for example, branching habit, stem thickness, and cell wall chemistry resulting in plants that are less rigid and more easily broken down.”

For microbial biomass breakdown, Rubin says that many candidates have already been identified.  These include Clostridia species for their ability to degrade cellulose, and fungi that express genes associated with the decomposition of the most recalcitrant features of the plant cell wall, lignin, the phenolic “glue” that imbues the plant with structural integrity and pest resistance.   The white rot fungus Phanerochaete chrysosporium produces unique extracellular oxidative enzymes that effectively degrade lignin by gaining access through the protective matrix surrounding the cellulose microfibrils of plant cell walls.

Another fungus, the yeast Pichia stipitis, ferments the five-carbon “wood sugar” xylose abundant in hardwoods and agricultural harvest residue. Rubin says that Pichia’s recently sequenced genome has revealed insights into the metabolic pathways responsible for this process, guiding efforts to optimize this capability in commercial production strains. Pathway engineering promises to produce a wider variety of organisms able to ferment the full repertoire of sugars derived from cellulose and hemicellulose and tolerate higher ethanol concentrations to optimize fuel yields.

Rubin also touches on the emerging technology of metagenomics—characterizing, without the need for laboratory culture, the metabolic profile of organisms residing in an environmental sample—for the identification of enzymes suitable for industrial-scale biofuel production.

“Using this prospecting technique, we can survey the vast microbial biodiversity to gain a better picture of the metabolic potential of genes and how they can be enlisted for the enzymatic deconstruction of biomass and subsequent conversion to high energy value fuels.”

As an example, Rubin cites an analysis of the hindgut contents of nature’s own bioreactor, the termite, (published in Nature (450, 560-565 [22 November 2007]), which has yielded more than 500 genes related to the enzymatic deconstruction of cellulose and hemicellulose.

The Nature Review goes on to list the feedstock genomes, microbial “biomass degraders,” and “fuel producers” completed or in progress.  These include the first tree genome completed—that of the poplar Populus trichocarpa and other plants in the sequencing queue, such as soybean, switchgrass, sorghum, eucalyptus, cassava, and foxtail millet.  In addition, Rubin points to oil-producing algae as an alternative source for biodiesel production—with the alga Chlamydomonas reinhardtii, as just one of several algal species that has been characterized for their ability to efficiently capture and convert sunlight into energy.

“Given the daunting magnitude of fossil fuel used for transportation, we will likely have to draw from several different sources to make an appreciable impact with cellulosic biofuels, all of which will in some significant way will be informed by genomics,” says Rubin.

“Toward this end, rapid new sequencing methods and the large-scale genomics previously applied to sequencing the human genome are being exploited by bioenergy researchers to design next-generation biofuels, higher-chain alcohols and alkanes, with higher energy content than petroleum and more adaptable to existing infrastructure.”

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories — Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest — along with the Stanford Human Genome Center to advance genomics in support of the DOE missions related to clean energy generation and environmental characterization and cleanup.  DOE JGI’s Walnut Creek, CA, Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

iPHoP: A Matchmaker for Phages and their Hosts

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California