DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › All in the Family: Focused Genomic Comparisons

January 11, 2018

All in the Family: Focused Genomic Comparisons

Genus-wide Aspergillus project highlights new functional genome annotation methods.

Colonies of Aspergillus: A. campestris; A. ochraceoroseus; and, A.steynii. These 3 species were among those whose genomes were sequenced in the study. (Kirstine Ellen Lyhne, DTU)

Colonies of Aspergillus (clockwise from top left): A. campestris; A. ochraceoroseus; and, A.steynii. These 3 species were among those whose genomes were sequenced in the study. (Kirstine Ellen Lyhne, DTU)

Found in microbial communities around the world, Aspergillus fungi are pathogens, decomposers, and important sources of biotechnologically-important enzymes. Each Aspergillus species is known to contain more than 250 carbohydrate active enzymes (CAzymes), which break down plant cell walls and are of interest to Department of Energy (DOE) researchers working on the industrial production of sustainable alternative fuels using candidate bioenergy feedstock crops. Additionally, each fungal species is thought to contain more than 40 secondary metabolites, small molecules with the potential to act as biofuel and chemical intermediates.

In a study published ahead the week of January 8, 2018 in the Proceedings of the National Academy of Sciences, a team led by researchers at the Technical University of Denmark (DTU), the DOE Joint Genome Institute (JGI), a DOE Office of Science User Facility, and the DOE’s Joint BioEnergy Institute (JBEI), led by Lawrence Berkeley National Laboratory (Berkeley Lab), report the first results of a long-term plan to sequence, annotate and analyze the genomes of 300 Aspergillus fungi. These findings are a proof of concept of novel methods to functionally annotate genomes in order to more quickly identify genes of interest.

“This is the first outcome from the large-scale sequencing of 300+ Aspergillus species,” said study co-author Igor Grigoriev, head of the JGI Fungal Genomics Program. “With the JGI’s strategic shift towards functional genomics, this study illustrates several new approaches for functional annotation of genes. Many approaches rely on experiments and go gene by gene through individual genomes. Using Aspergillus, we’re sequencing a lot of closely-related genomes to highlight and compare the differences between genomes. A comparative analysis of closely related species with distinct metabolic profiles may result in a relatively small number of species-specific secondary metabolism genes clusters to be mapped to a relatively small number of unique metabolites.”

Species Diversity, Chemical Diversity

Watch Mikael R. Andersen's talk on this project from the 2017 JGI Genomics of Energy & Environment Meeting at http://bit./ly/JGI2017Andersen

Click here to watch Mikael R. Andersen’s talk on this project from the 2017 JGI Genomics of Energy & Environment Meeting.

In the study, the team sequenced and annotated 6 Aspergillus species; 4 were sequenced using the Pacific Biosciences platform, producing very high quality genome assemblies that can serve as reference strains for future comparative genomics analyses. A comparative analysis involving these genomes and other Aspergillus genomes—several of which were sequenced by the JGI—was then conducted, and allowed the team to identify biosynthetic gene clusters for secondary metabolites of interest.

“One of the things we found to be interesting here was the diversity of the species we looked at – we picked four that were distantly related,” said study senior author Mikael R. Andersen, Professor at DTU. “With that diversity comes also chemical diversity, so we were able to find candidate genes for some very diverse types of compounds. This was based on a new analysis method that first author Inge Kjaerboelling developed. Moreover, we also showed how to solidify said predictions for a given compound by sequencing additional genomes of species known to produce the compound. By looking for genes found in all producer species, we can elegantly pinpoint the genes.”

Study co-author Scott Baker, a fungal researcher at the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility located at the Pacific Northwest National Laboratory, and a member of JBEI’s Deconstruction Division, explained why finding candidate genes for diverse compounds matters. “The secondary metabolites are important because they represent such interesting and novel chemistry with regard to the biosynthesis of molecules that could be biofuels, biofuel precursors or bioproducts,” he said. “While it is a significant effort to determine the structures of purified secondary metabolites, it is often relatively straightforward. However, connecting these molecules to their biosynthetic pathways can be quite challenging. We show that using comparative genomics can efficiently lead to reasonable predictions of gene clusters involved in biosynthetic pathways.”

Aspergillus in Mycocosm

Grigoriev added that to date, about 30 Aspergillus genomes have been published, an additional 25 genomes are publicly available from the JGI fungal genomes portal Mycocosm at genome.jgi.doe.gov/Aspergillus, and over 100 genomes are being sequenced and analyzed.

As the JGI continues to fulfill its Strategic Plan of evolving into more of a Functional Genomics-capable User Facility, integrating genomic sequence, expression, computational and metabolic analyses, and biochemical information into a more complete picture of biology relevant to DOE missions, cross-Facility and cross-disciplinary efforts such as this one will become even more important. Characterizing the identity and roles of secondary metabolites, and the genes necessary for their generation, is critical to this effort and can provide potential tools for improving the ability to process recalcitrant biomass into precursors for biofuels and bioproducts.

Senior author and JGI collaborator Mikael R. Andersen spoke about the project at the 2017 DOE JGI Genomics of Energy & Environment Meeting. Watch his talk at http://bit./ly/JGI2017Andersen.

Read the DTU news release: “New analysis method reveals organisms’ good and bad potentials”

 

***

EMSL, the Environmental Molecular Sciences Laboratory, is a DOE Office of Science User Facility. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California