DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Uncovered: 1000 New Microbial Genomes

June 12, 2017

Uncovered: 1000 New Microbial Genomes

Potential biotech applications seen with release of 1,003 reference bacterial and archaeal genomes.  

The release of 1,003 phylogenetically diverse bacterial and archaeal reference genomes, the single largest release to date, is part of the DOE JGI’s Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative. (Zosia Rostomian, Berkeley Lab Creative Services.)

The release of 1,003 phylogenetically diverse bacterial and archaeal reference genomes, the single largest release to date, is part of the DOE JGI’s Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative. (Zosia Rostomian, Berkeley Lab Creative Services.)

The number of microbes in a handful of soil exceeds the number of stars in the Milky Way galaxy, but researchers know less about what’s on Earth because they have only recently had the tools to deeply explore what is just underfoot. Now scientists at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, have taken a decisive step forward in uncovering the planet’s microbial diversity. In a paper published June 12, 2017 in Nature Biotechnology, DOE JGI’s Prokaryotic Super Program head Nikos Kyrpides and his team of researchers report the release of 1,003 phylogenetically diverse bacterial and archaeal reference genomes—the single largest release to date.

“Bacteria and archaea comprise the largest amount of biodiversity of free-living organisms on Earth,” said Kyrpides, senior author of the paper. “They have already conquered every environment on the planet, so they have found ways to survive under the harshest of conditions with different enzymes and with different biochemistry.”

The U.S. Department of Energy is interested in learning more about this biodiversity because microbes play important roles in regulating Earth’s biogeochemical cycles—processes that govern nutrient circulation in terrestrial and marine environments, for example. Uncovering the functions of genes, enzymes and metabolic pathways through genome sequencing and analysis has wide applications in the fields of bioenergy, biomedicine, agriculture and environmental sciences.

New Functions, New Applications

The effort is part of the DOE JGI’s Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative that aims to sequence thousands of bacterial and archaeal genomes to fill in unexplored branches of the tree of life. “In addition to identifying over half a million new protein families, this effort has more than doubled the coverage of phylogenetic diversity of all type strains with genome sequences”, said Supratim Mukherjee, a DOE JGI computational biologist and co-first author of the paper.

Since a great portion of research in microbial genomics has been focused on human pathogens or biotechnological work horses, GEBA is the main effort worldwide attempting to address the phylogenetic coverage knowledge gap by sequencing a diverse set of cultured but poorly characterized microbial type strains. “It was recognized that we weren’t sampling many parts of the tree of life,” said Rekha Seshadri, a DOE JGI computational biologist and co-first author of the paper. “And if we sampled some of those parts of the tree, we’d discover new functions, which could be an important resource for new applications.”

The release of these genomes is the culmination of almost a decade’s worth of work, with the first 56 GEBA genomes published in 2009. The microorganisms were isolated from environments ranging from sea water and soil, to plants, and to cow rumen and termite guts. Genome sequencing and analysis was done at the DOE JGI through the Community Science Program, and the 1,003 genomes are publicly available through the Integrated Microbial Genomes with Microbiomes (IMG/M) system, with all associated metadata in compliance with the Genomics Standards Consortium available through the Genomes OnLine Database. In fact, all these genomes were publicly released immediately after sequencing to maximize their use by the larger scientific community, in accordance with the DOE JGI’s practice of immediate data release, said co-author Tanja Woyke, head of the DOE JGI Microbial Genomics Program, who overviewed the sequencing of the project.

With the release of high quality genomic information from the 1,003 reference genomes, DOE JGI is providing a wealth of new sequences that will be invaluable to scientists interested in experiments such as characterizing biotechnologically relevant secondary metabolites or studying enzymes that work under specific conditions, Seshadri said. And because Kyrpides’ research team sequenced type strains that are readily available from culture collections, scientists can perform follow-up experiments with them in the lab, she added.

“The partnership with culture collection centers such as the Leibniz Institute DSMZ in Germany and the ATCC Global Bioresource Center in the U.S., was critical in accomplishing this endeavor,” said Kyrpides.

Though it’s evident that bacteria can jumpstart innovations in biotechnology—such as the species Streptococcus pyogenes, which produces the Cas9 protein that functions as the “scissors” in the breakthrough CRISPR-Cas9 gene editing tool—scientists have only just begun to uncover the hidden potential that exists within the wide genetic diversity of bacterial and archaeal phyla.

A Reference Framework to Anchor Data

Jonathan Eisen, a microbiologist at the University of California, Davis who initiated the GEBA project at the DOE JGI in 2007 with Kyrpides and Phil Hugenholtz, and Hans-Peter Klenk at the Leibniz Institute DSMZ, believes that the paper reinforces that having a goal to achieve phylogenetic diversity is a more useful approach than random selection when choosing microbial organisms for sequencing.

Some of the DOE JGI authors on the Nature Biotechnology paper. Front Row: Neha Varghese, co-first author Rekha Seshadri, Emiley Eloe-Fadrosh. Back Row: Tanja Woyke, George Pavropoulos, David Paez-Espino, senior author Nikos Kyrpides, Natalia Ivanova. Top Left Inset: co-first author Supratim Mukherjee

Some of the DOE JGI authors on the Nature Biotechnology paper. Front Row: Neha Varghese; co-first author Rekha Seshadri; Emiley Eloe-Fadrosh. Back Row: Tanja Woyke; George Pavropoulos; David Paez-Espino; senior author Nikos Kyrpides; former DOE JGI microbial ecologist Phil Hugenholtz, now at the University of Queensland; Natalia Ivanova. Top Left Inset: co-first author Supratim Mukherjee

He said filling out the tree of life will provide researchers with a reference framework with which to understand their own results. “It’s incredibly helpful for interpreting environmental data. For example, if you go and find a fossil bed somewhere and find tons of bones, but if no one had ever assembled skeletons before, it’d be useless,” Eisen said. “But with an assembled skeleton to use as a reference, “you can say ‘this looks like a mammal’. The same is true with metagenomic data—if you have reference genomes from across the tree [of life], you can anchor environmental data much more accurately.”

“At a time when we are witnessing the public databases being flooded by an infusion of low or questionable quality, highly fragmented and chimeric or contaminated genomes, the significance of genomes from the type strains as invaluable taxonomic signposts cannot be overstated,” Kyrpides said.

Collaborators on this work included researchers a the Leibniz Institute DSMZ in Germany, the University of Georgia, Michigan State University, the University of Queensland in Australia and Newcastle University in the United Kingdom.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California