Published in:
Genome Res 19(8) , 1393-403 (Aug 2009)
Author(s):
DOI:
10.1101/gr.087072.108
Abstract:
The evolution of vertebrates has included a number of important events: the development of cartilage, the immune system, and complicated craniofacial structures. Here, we examine domain shuffling as one of the mechanisms that contributes novel genetic material required for vertebrate evolution. We mapped domain-shuffling events during the evolution of deuterostomes with a focus on how domain shuffling contributed to the evolution of vertebrate- and chordate-specific characteristics. We identified approximately 1000 new domain pairs in the vertebrate lineage, including approximately 100 that were shared by all seven of the vertebrate species examined. Some of these pairs occur in the protein components of vertebrate-specific structures, such as cartilage and the inner ear, suggesting that domain shuffling made a marked contribution to the evolution of vertebrate-specific characteristics. The evolutionary history of the domain pairs is traceable; for example, the Xlink domain of aggrecan, one of the major components of cartilage, was originally utilized as a functional domain of a surface molecule of blood cells in protochordate ancestors, and it was recruited by the protein of the matrix component of cartilage in the vertebrate ancestor. We also identified genes that were created as a result of domain shuffling in ancestral chordates. Some of these are involved in the functions of chordate structures, such as the endostyle, Reissner’s fiber of the neural tube, and the notochord. Our analyses shed new light on the role of domain shuffling, especially in the evolution of vertebrates and chordates.