DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › DOE JGI Sequences DNA from Extinct Cave Bear

June 2, 2005

DOE JGI Sequences DNA from Extinct Cave Bear

WALNUT CREEK, CA–The genomic DNA sequencing of an extinct Pleistocene cave bear species–the kind of stuff once reserved for science fiction–has been logged into scientific literature thanks to investigators from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI).  This study, published in the June 2 online edition of the journal Science, has set the research community’s sights on traveling back in time through the vehicle of DNA sequencing to reveal the story of other extinct species, including our nearest relatives, the Neandertals.

cavebearbone

Cave bear bone with scale showing 1 cm per square

Until now, researchers have been stymied in attempts to sequence genomes of extinct species. The DOE JGI scientists overcame many of the difficulties normally associated with recovery of DNA from ancient samples. DNA starts degrading at death, while microbes attack the decaying carcass to utilize the nutrients present in the dead organism as an energy source. What remains and confounds the efforts to sequence and characterize these artifacts is an overabundance of microbial contaminants along with the occasional DNA fingerprints contributed unwittingly by the modern fossil hunters or lab workers.

“Among the limitations of previous ancient DNA studies was that they were restricted to mitochondrial DNA sequences,” said Eddy Rubin, DOE JGI director, in whose laboratory the work was conducted. “While mitochondria are great for learning about evolutionary relationships between species, to understand the functional differences between extinct and modern species we really need genomic DNA, and nobody has been able to purify and sequence large quantities of DNA from these old samples.

“We applied the standard techniques that we normally use for modern genome projects to ancient DNA specimens, a brute force high throughput sequencing approach.  With this strategy, we weren’t terribly concerned that much of what we were sequencing were microbial contaminants but hoped that among the large amounts of sequence that we were generating would be some of the ancient DNA we really were interested in.  We were looking for the proverbial needle in the haystack,” Rubin said.  “It worked—among the expected lion’s share of contaminants we recovered reasonable amounts of 40,000-year-old cave bear DNA and useful information from it.  We were lucky in that we had a very powerful magnet in the form of industrial strength computing to tease out the interesting data from a hodgepodge of different DNAs.”

cavebearskull

Cave bear skull, courtesy Gernot Rabeder, Institute of Paleontology, University of Vienna. Scale as above.

It turned out that about 6 percent of the sequence from the sample yielded cave bear sequence — the rest represented a mosaic of microbial contaminants. Nevertheless within that fraction, there was a range of genomic sequence types, including fragments of 21 genes, identified by comparing the cave bear sample to the complete dog genome sequence that exists in the public databases. Dogs and bears, which diverged some 50 million years ago, are 92 percent similar on the sequence level.

The samples of cave bear bones and teeth from the study were collected from two cave locations in Austria. Extinct for more than 10,000 years, these particular cave bears, Ursus spelaeus, whose remains are found in abundance, were related to the ancestors of modern brown bears and polar bears. Fossil and cave-painting evidence supports that ancient humans interacted with the cave bears.

“When people hear about our success, they immediately think about how this strategy could work for dinosaurs,” Rubin said. Barring some fundamental misunderstanding about the nature of DNA decay, he says it is highly unlikely viable DNA will be recovered from 150 to 200 million year old Jurassic age samples.

cavebeartooth

Cave bear tooth.

Currently, the theoretical limit is about 100,000 years old for samples preserved in the same conditions that the cave bear specimens were found — relatively dry, high altitude, with moderate temperatures—or if frozen, perhaps longer.

“We picked cave bear as an initial test case ancient DNA target because the samples we used in the study are roughly the same age as Neandertals,” Rubin said. “Our real interest is in hominids which include humans and the extinct Neandertal—the only other hominid species that we have to compare with humans. Our nearest living relative is the chimp and that’s five million years of divergence.  Although we are very similar on a sequence level, there are obvious phenotypic differences.  Next, we would like to access and evaluate genomic information about other hominid species, Neandertals in particular, as they represent probably our closest prehistoric relative.”

Another possibility is to apply these techniques to the remains found recently in Indonesia of the Flores Man, nicknamed “the hobbit.” Although younger, at 18,000 years old, the tropical environment where the skeletons were found may have accelerated the DNA degradation process.  The Flores Man is believed to have derived from a more ancient hominid lineage, Homo erectus, which diverged from modern humans some two million years ago, as compared to Neandertal, which diverged 500,000 years ago.

The notion would be to optimize the protocols that succeeded in the cave bear project to extract useful quantities of DNA from Neandertal and Flores Man, so that two hominid species could be compared to humans.  Then, if you include chimps in that comparison, Rubin said, you would gain insight into the genomic changes between chimps and hominids and help describe the chain of evolutionary events that led to humans.

“This research represents the merging of two previously unrelated fields–ancient species investigations and powerful high-throughput DNA sequencing technology, DOE JGI’s forte,” said Dr. Aristides Patrinos, associate director of science for Biological and Environmental Research, whose office supported the published work.  “This is yet another of the many advances enabled by the original investment made by DOE in the Human Genome Project.”

First author on the Science paper was Lawrence Berkeley National Laboratory postdoctoral fellow James Noonan, who joined DOE JGI’s Chris Detter and Doug Smith, and collaborators at the Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, and the Institute of Paleontology, University of Vienna, Vienna, Austria.

The DOE Joint Genome Institute, supported primarily by the Department of Energy Office of Biological and Environmental Research in the DOE Office of Science, is among the world leaders in whole-genome sequencing projects devoted to microbes and microbial communities, model system vertebrates, aquatic organisms, and plants. Established in 1997, JGI now unites the expertise of four national laboratories, Lawrence Berkeley, Lawrence Livermore, Los Alamos, and Oak Ridge, along with the Stanford Human Genome Center, to advance the frontiers of genome sequencing and related biology.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

JGI at 25: Expanding Metagenomics to Capture Viral Diversity

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California