DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › DOE JGI Finishes 100th Microbial Genome

May 23, 2006

DOE JGI Finishes 100th Microbial Genome

ORLANDO, Florida — Microbes, thriving in even the world’s most extreme environments, are capable of performing myriad biological functions, learned over the billions of years they have inhabited the planet. Those lessons, and how they can be captured to render clean renewable sources of energy and to repair damaged environments, are among the many secrets encoded in their DNA sequence. On May 23, at the general meeting of the American Society of Microbiology (ASM), the U.S. Department of Energy Joint Genome Institute (DOE JGI) will announce that it has finished the sequence of 100 microbial genomes and released this information for the benefit of the global research community.

ASM President Dr. Stanley Maloy, who will touch on DOE JGI’s achievement in his President’s Forum remarks, said that the 100 microbes represent a rich portfolio of the vast and mostly uncharacterized microbial world. “DNA sequencing has opened a particularly productive vein to mine in exploring and expanding the frontier of microbiology. Especially where, through conventional culture methods, we are unable to shed light on the metabolic profiles of these microorganisms and their environmental implications, DNA sequencing provides us a welcome set of tools.”

“The power of DOE JGI sequencing microbes, and other organisms, is that it gives us the complete genomic ‘parts list’ of those organisms,” said Dr. Raymond L. Orbach, Director of the DOE Office of Science. “With this list in hand, we can explore how microbes use these parts to build and run their key functions, many of critical importance to DOE because they can break down plant materials to produce such useful sources of energy as ethanol and hydrogen, and clean up toxic waste sites. We know that microbes can perform these and a multitude of other amazing tasks and with the proper technology we can harness these capabilities.”

DOE JGI, a national user facility, has sequenced or is in the process of sequencing over 380 organisms, more than any other institution in the world. DOE JGI averages over 3.1 billion bases or letters of sequence generated per month, or roughly the equivalent of a human genome once over. As microbes range in size from typically five to tens of millions of bases, several microbes could be sequenced in one day. However, the sequencing process, in order to meet rigorous quality standards and to satisfy the demands of the scientific community, is an iterative one, requiring six- to eight-times coverage. The term “finished,” associated with the 100 microbial genomes accomplished by DOE JGI, is a technical designation referring to a standard of accuracy established for the Human Genome Project of tolerating no more than one mistake in 50,000 letters of genetic code with no gaps.

The microbes sequenced by DOE JGI, both single-celled and those multi-celled organisms invisible to the naked eye, cross all main branches of the tree of life: Eubacteria, Archaea, and even the Eukaryota, which include microscopic fungi, plants, and animals.

The 100th microbial genome, a project originally proposed by Dr. Kevin Sowers of the Center of Marine Biotechnology at the University of Maryland Biotechnology Institute (UMBI), is Methanosarcina barkeri fusaro, a methane-producing organism that exploits a unique metabolic pathway to do the job. This microbe, while isolated from a freshwater mud sample, also lives in the rumen of cattle where cellulose and other polysaccharides are digested.

“We are delighted that the DOE JGI’s 100th genome is a microorganism that one of our UMBI faculty members has been studying to evaluate its potential for bioremediation and as an alternative energy source,” said Dr. Jennie Hunter-Cevera, UMBI President. “By sequencing this and other important organisms, DOE JGI is helping to accelerate biotechnology discovery and innovation.”

Microbes are critical micromanagers in the balance of nature. DOE JGI collaborator Dr. Donald A. Bryant, Ernest C. Pollard Professor of Biotechnology and Professor of Biochemistry and Molecular Biology at Penn State University, elaborates.

“Green sulfur bacteria, Chlorobi, are extremely important players in the global cycling of carbon, sulfur, and nitrogen,” said Bryant. “Thanks to DOE JGI, the availability of multiple genome sequences for the Chlorobi has turbocharged our functional genomics studies. This has allowed us to make remarkable progress in understanding sulfur and ferrous iron oxidation, carotenoid and chlorophyll biosynthesis, photosynthetic light harvesting, oxygen tolerance, and many other aspects of the physiology and metabolism of the green sulfur bacteria.”

The search for microorganisms that can inform solutions to energy and environmental challenges can go to the extremes–the boiling hot pools in Yellowstone National Park, for instance–and lead to new biotechnology products.

“DOE JGI has played an invaluable and otherwise unavailable role in the development of new enzymes for industrial use,” said David Mead, President & CEO, of Lucigen Corporation. “The sequence acquisition of DNA from superheated thermal aquifers and other unique sources has resulted in the discovery of a new class of thermostable DNA polymerases and unique thermostable cellulase and hemicellulase enzymes. Without the DOE JGI these valuable molecules would not have made it into the marketplace.”

The list below features highlights of some of the finished 100 and references the collaborating institutions and the roles of the organisms in their environment.

Acidothermus cellulolyticus ATCC 43068. Alison Berry, University of California, Davis. Isolated from acid hot spring in Yellowstone; degrades cellulose, source of high-temperature enzymes.

Clostridium thermocellum. David Wu, University of Rochester; Mike Himmel, National Renewable Energy Laboratory. Cellulose degrader.

Cytophaga hutchinsonii ATCC33406. Mark McBride, University of Wisconsin Milwaukee. Cellulose degrader.

Frankia Cc13. Louis Tisa, University of New Hampshire. Fixes nitrogen; promotes formation of woody-biomass energy source.

Pichia stipitis. Thomas W. Jeffries, University of Wisconsin, Madison, USDA, Forest Service, Forest Products Laboratory, with José M. Laplaza; Volkmar Passoth, Swedish University of Agricultural Sciences (SLU), Yong-Su Jin, MIT: Ferments xylose to ethanol; potential to oxidize products of lignin degradation and plays a role in cellulose degradation.

Saccharophagus degradans 2-40. (formerly Microbulbifer degradans) Ronald Weiner, University of Maryland. Marine microbe degrades and recycles insoluble complex polysaccharides; potential for conversion of complex biomass to energy.

Thermobifida fusca YX. David Wilson and Diana Irwin, Cornell University. Major degrader of organic materials.

Moorella thermoacetica ATCC39073. Steven Ragsdale, University of Nebraska. Fixes carbon dioxide in absence of oxygen.

Nostoc punctiforme. Jack Meeks, University of California, Davis. Fixes carbon dioxide and nitrogen; produces hydrogen; survives acidic, anaerobic, and low-temperature conditions.

Burkholderia species. Jim Tiedje, Michigan State University. Outstanding degrader of polychlorinated biphenyls (PCBs).

Chromohalobacter salexigens DSM 3043 (formerly Halomonas elongate). Laszlo Csonka, Purdue University; Brad Goodner, Hiram College; Aharon Oren, The Hebrew University of Jerusalem. Extremely salt tolerant; displays metal resistance; degrades aromatic hydrocarbons and toxic organics.

Deinococcus geothermalis DSM11300. Michael Daly, Uniformed Services University of the Health Sciences, James K. Fredrickson, Pacific Northwest National Laboratory, Kira S. Makarova, National Institutes of Health. Resists radiation; can bioremediate radioactive mixed waste.

Desulfovibrio desulfuricans G20. Judy D. Wall, University of Missouri. Reduces sulfate, uranium, and toxic metals; corrodes iron piping; “sours” petroleum with hydrogen sulfide.

Geobacter metallireducens. Derek Lovley, University of Massachusetts. Important player in the carbon and nutrient cycles of aquatic sediments and in the bioremediation of organic and metal contaminants in groundwater.

Rhodobacter sphaeroides. Samuel Kaplan, University of Texas Health Sciences Center at Houston. Metabolically diverse, grows in wide variety of conditions; photosynthetic, providing fundamental insights into light-driven, renewable-energy production; can detoxify metal oxides.

Shewanella species. Jim Fredrickson, Pacific Northwest National Laboratory. Degrades metals including uranium, technetium, and chromium; important in carbon cycling in anaerobic environments.

DOE JGI provides the scientific community at large with access to DNA sequencing for DOE-relevant projects based on scientific merit as judged through independent peer review. Nominations, due August 10, 2006, are currently being sought for candidate microbes, microbial consortia, for draft genomic sequencing in support of DOE’s Office of Biological and Environmental Research (BER) Bioenergy Program element within its Genomics: GTL Program. Nominated candidates must be relevant to the BER mission to determine genomic sequences of microorganisms involved in energy production, particularly conversion of lignocellulosic material to ethanol, or hydrogen, or other biofuels.

The DOE Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest, along with the Stanford Human Genome Center to advance genomics in support of the DOE mission related to clean energy generation and environmental characterization and clean-up. DOE JGI’s Walnut Creek, Calif. Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California