DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Gene-Rich Human Chromosome 19 Sequence Completed

March 31, 2004

Gene-Rich Human Chromosome 19 Sequence Completed

Walnut Creek, CA–The United States Department of Energy (DOE) Joint Genome Institute (JGI) and Stanford University report today the completion of the sequencing of human chromosome 19, the most gene-rich of all the human chromosomes. This achievement is described in the April 1, 2004 edition of the journal Nature.

“Culminating 18 years of research, this partnership exemplifies DOE’s commitment to advancing our understanding of the complex interplay between our human health and the environment,” said Energy Secretary Spencer Abraham, whose agency funded the work through its Office of Science.

Embedded in this sequence information are critical regulatory networks of genes tasked with controlling such functions as repairing DNA damage caused by exposure to radiation and to other environmental pollutants. Studies of DNA-repair genes, initiated at the DOE national laboratories, are yielding insights into the development of certain cancers, many of which appear to be caused by defects in DNA-repair pathways. Also, new insights are being gleaned about other gene families implicated in detoxifying and excreting chemicals foreign to the body.

“With this high-quality sequence now made freely available to the scientific community, more light will be shed on individual responses to medicines,” Abraham said. “This will enable the development of more sensitive diagnostics for susceptibility to a wide array of important diseases. In time, with this information in hand, physicians will be able to tailor more effective individualized therapeutic strategies.”

Chromosome 19, at 55.8 million bases or letters of genetic code, although representing only about 2 percent of the human genome, features nearly 1,500 genes. They include genes that code for such diseases as insulin-dependent diabetes, myotonic dystrophy, migraines, and familial hypercholesterolemia (an inherited form of elevated blood cholesterol), which increases the risk of cardiovascular disease.

“Beyond the significant revelation that chromosome 19 has more than twice the gene density of the genome-wide average, it also offers a fertile landscape for exploring evolutionary motifs,” said JGI Director Eddy Rubin. “An intriguing picture has emerged regarding conservation and divergence, revealing large blocks of gene conservation with rodents as well as segments of coding and noncoding conservation with more distant species such as the pufferfish, Fugu rubripes, which was also sequenced here at the JGI. While not long ago these noncoding regions were considered nonsense, now they are actually proving to have powerful regulatory influence over the genes that they bracket.”

The DOE originally selected chromosome 19 as a sequencing target because of the agency’s abiding mission of investigating the link between DNA damage from radiation exposure and human cancer. Initial work conducted by Lawrence Livermore National Laboratory in the mid 1990s led to the mapping of multiple DNA-repair genes on chromosome 19. In 1999, the sequencing and finishing projects were transferred to the JGI and the Stanford Human Genome Center, respectively.

“Unlike earlier draft human genome sequences, this version is 500 times better in terms of contiguity and accuracy–which makes a huge difference if you are trying to do biology with that sequence,” said Richard Myers, director, Stanford Human Genome Center. “It gives you a sense of the chromosome’s topography–one filled with such biologically interesting features as transcription factors, olfactory receptor genes, and zinc finger genes.”

Olfactory receptors represent the largest multigene family in higher organisms. They have evolved in response to the need for animals to recognize millions of odors–both threatening and attractive–in their environment. Transcription factors are proteins that need to be recognized by RNA polymerase in order to initiate the elaboration of nucleotides along the DNA molecule. Zinc finger proteins are chains of amino acids that capture a zinc ion and bind to RNA or DNA and play a critical role in a cell’s life cycle. These proteins regulate the expression of genes as well as nucleic acid recognition, reverse transcription, and virus assembly. Drug development efforts seek to disrupt these zinc finger structures to prevent viruses from functioning.

Chromosome 19, however, was not without its challenges, Myers added. “The sequence was harder to work through than expected. It’s a real tribute to this team that they could get the sequence finished.”

Stanford’s role in the collaboration is the critical one of “finishing” the DNA sequence. The finishing process ensures that the information made available through the public databases is completely contiguous, with all ambiguities resolved. This painstaking process begins with the electronic transmission of draft data sets, some 20 billion bytes per week, and shipping of bacteria culture plates from the JGI’s Production Genomics Facility in Walnut Creek, Calif. to Stanford.

“To get this level of confidence, several iterations of the genome sequence is required, typically at six to eight times coverage,” Myers said. In areas that fail to meet the required quality standard, directed finishing reactions of many different types are performed and the resulting data incorporated back into the draft assembly. Only after rigorous scrutiny, when all data has been extensively reviewed by a human finisher, and all gaps and low-quality areas have been resolved, will the sequence data be posted in the public databases. The quality of the finished chromosome 19 sequence far exceeds the 1 in 10,000 base pair error rate set by the International Human Genome Sequencing Consortium, with the error rate estimated to be much less than 1 in 100,000 base pairs.

“The JGI-Stanford partnership has been integral to the timely and economical completion of chromosome 19,” Rubin said. “DOE’s contribution to sequencing the human genome totals some 11 percent, with chromosome 19 representing the first of the three chromosomes the team has tackled, together with the completion of Chromosomes 16 and 5 in the offing.” The magnitude of the accomplishment is further reflected in the nearly 100 authors cited on the paper led by Jane Grimwood at Stanford and Susan Lucas at the JGI. Other authors include investigators at Lawrence Livermore and Los Alamos national laboratories; UC Santa Cruz; Children’s Hospital Oakland, Calif; the Howard Hughes Medical Institute at the University of Washington, Seattle; Case Western Reserve University; and the National Cancer Institute.

The Joint Genome Institute (JGI), located in Walnut Creek, Calif. was established in 1997 by three of the DOE national laboratories managed by the University of California: Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory in California and Los Alamos National Laboratory in New Mexico. In addition to its human genome sequencing activities, JGI has whole genome sequencing programs devoted to other vertebrates, microbes, and plants. Funding for the JGI is predominantly from the Office of Biological and Environmental Research in DOE’s Office of Science.

The Stanford Human Genome Center (SHGC) is part of the Department of Genetics at Stanford University. SHGC, originally funded as a pilot sequencing center for the human genome project, is currently involved in a variety of scientific research programs, including large-scale genomic finishing, human disease linkage studies, vertebrate diversity, and the elucidation of functional sequence elements in the human genome. Additional information about the SHGC is available at http://www-shgc.stanford.edu.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

JGI at 25: Expanding Metagenomics to Capture Viral Diversity

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)

A New Actinobacterial Chapter in the Genomic Encyclopedia of Bacteria and Archaea

Open book with circular representations of microbial genomes above, all against a green background
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California