DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › How Now, Inside the Cow: Nearly 30,000 Novel Enzymes for Biofuel Production Improvements

January 27, 2011

How Now, Inside the Cow: Nearly 30,000 Novel Enzymes for Biofuel Production Improvements

WALNUT CREEK, Calif.—Cows eat grass—this has been observed for eons.  From this fibrous diet consisting mainly of the tough to degrade plant cell wall materials cellulose and hemicellulose, substances of no nutritional value to most animals, ruminants manage to extract all they need to nourish themselves, their progeny and their keepers.   And now, the cow, or rather the network of organisms working unseen in the cow’s forestomach or rumen, is providing researchers with vital information that may someday accelerate the large-scale deployment of biofuels.   This will offer a window into a major category of microbes that has long resisted the attempts of scientists to grow and study.

cow-rumen-jonas

The fistulated cow system allows direct access into the animal’s foregut. This enabled researchers to incubate biomass-containing nylon bags to isolate rumen microbes associated with a defined plant substrate to identify genes and genomes participating in biomass deconstruction. Credit: Jonas Løvaas Gjerstad

Through massive-scale DNA sequencing, researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), with support from the Energy Biosciences Institute (EBI), have characterized the genes and genomes of plant-digesting microbes isolated from the cow rumen and reported in a study published January 28 in the journal Science. One of the challenges associated with developing alternative fuels from plants has been the high cost and energy inputs that are associated with the processing plant biomass so that it can be more easily converted into sugars and from there into biofuels to address our transportation needs.

“Microbes have evolved over millions of years to efficiently degrade recalcitrant biomass,” said Eddy Rubin, Director of the JGI and a lead on this study. “Communities of these organisms can be found in diverse ecosystems, such as in the rumen of cows, the guts of termites, in compost piles, as well as covering the forest floor.  Microbes have solved this challenge, overcoming the plant’s protective armor to secure nutrients, the rich energy source that enables them and the cow to thrive.”

Bovines are thought to have first appeared on the landscape millions of years ago and were domesticated by humans about 10,000 years ago. Rumen microbes evolved to produce molecular machines in the form of enzymes able to efficiently deconstruct plant cell wall polysaccharides such as cellulose and hemicellulose into their constituent small sugar molecules.  Another way of looking at it is that in exchange for housing in the cow rumen, these microbes pay rent by efficiently converting fiber that the cow cannot utilize into small sugar molecules that serve as substrates for fermentation into end-products that provide energy for the cow.  This study has enabled the JGI investigators and collaborators to mine, at a scale thousands of fold greater than in any prior work, the enzymatic capabilities encoded in the genomes of previously uncharacterized rumen microbes. This has deepened our understanding of nearly 30,000 genes generating enzymes that may possess powerful capabilities for degrading biomass into simple sugars, the essential first step in cellulosic biofuel production.

cow-rumen-switchgrass-Tighe

A fragment of switchgrass decomposing in contact with cow rumen microbes. Credit: Damon Tighe, DOE JGI

“Industry is seeking better ways to break down biomass to use as the starting material for a new generation of renewable biofuels,” said JGI Director and project lead Eddy Rubin. “Together with our collaborators, we are examining the molecular machinery used by microbes in the cow to break down plant material.”

Only about one percent of the planet’s microbial species can be readily grown in the laboratory; the vast majority—in the soil, water, and residing in the other larger life forms such as in cows—cannot be cultured in a lab.  “Metagenomic” studies such as this provide an alternative method of analysis.

Rubin’s postdoctoral fellows Matthias Hess and Alex Sczyrba used one of the most promising large-scale bioenergy crops — switchgrass (Panicum virgatum) – and let the cows’ microbial symbionts located in the foregut perform their magic. To better control the process, Hess and his colleagues at the University of Illinois worked with the fistulated cow model that, for scientific research purposes, allows direct access through a tube into the foregut, which can be considered as a fermentation chamber in which oxygen is absent. Instead of feeding the grasses directly to the cows, the switchgrass samples were placed in nylon bags and then inserted into the cow rumen, where they were left to be digested. After 72 hours, the bags were removed, and the DNAs from the microbes involved in digesting the material that were adherent to the switchgrass were isolated and then sequenced.

cow-rumen-switchgrass-eddy

DOE Joint Genome Institute Director Eddy Rubin is the senior author on the January 28, 2011 “Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen.” Credit: David Gilbert, DOE JGI

The amount of data generated for this study of rumen microbes, 270 billion letters of the DNA code, was enormous; about 100-fold greater than the number of letters in the entire human genome.  Generating the data was not the most challenging part of this project, Hess noted. “The real challenge was to analyze the vast amount of data for which no reference genome was available and to identify and produce full-size functional enzymes based solely on information obtained from billions and billions of short snippets of DNA sequences,” he said.

To analyze the information, the researchers developed a genome assembly strategy that could handle the vast amount of data while making sure to avoid misassemblies that would have led to chimeras – artificial genes not present in the microbial community. “Imagine someone mixing hundreds of jigsaw puzzles with millions of pieces each into a big pile,” said Sczyrba. “We tried to put as many of these back together, making as few mistakes as possible. It is not an easy problem. You need a good strategy and a lot of computational resources to solve this problem.

By employing different filters Sczyrba whittled down the number of the more than two million predicted genes to 27,755 candidate genes that encoded a specific category of enzymes called carbohydrate-active enzymes (CAZymes) that can break down plant polysaccharides (e.g. cellulose) into small sugars. Hess identified the most promising candidates, tested a subset of 90 candidate genes for functionality and found that more than 50 percent of the tested candidates had cellulose-degrading activity with almost 20 percent able to break down the “real-world” biofuel crop switchgrass. This made it clear to the team that a significant faction of the 30,000 genes identified are indeed active against plant material and would be a treasure trove of novel enzymes for biofuel researchers.  Hess said that the discovery of these novel enzymes from this one study significantly increased the number of enzymes believed to act on carbohydrates by nearly a third compared to numerous previous studies carried out over decades.

Besides the identification of genes encoding enzymes that might play a major role in future processes for the industrial production of lignocellulosic biofuel, Hess and Sczyrba wanted to assemble not only genes but the entire genomes of organisms involved in biomass breakdown from the rumen. Using various computational puzzle-solving approaches, they were able to build 15 genomes for the rumen microbes, none of which matched anything that had previously been described.

To confirm their computational results the team turned to another way of examining the genomes of microbes that also did not require a culturing step: single cell genomics involving the study of the genome of a single uncultured microbial cell.  They were able to isolate a single rumen microbe using a cell sorter, and without having it grow, they generated the genome of this uncultured microbe using single cell sequencing technology.  When the DNA sequences derived from the single genome were mapped to the 15 computationally assembled genomes, the researchers found that more than 98 percent of the data matched to one single genome that had been assembled in silico. “The single cell data made us confident that what we saw was real,” Hess said. “Otherwise we’d have computational data only, which would have made our work much, much less convincing.”

cow_rumen_illumina

DOE JGI researchers Matthias Hess (middle) and Alexander Sczyrba (right) and Gary Schroth (left) of Illumina, Inc. clutch the hard drive containing the cow rumen metagenome dataset. Credit: David Gilbert, DOE JGI

This pioneering work, led by the JGI and its collaborators, illustrates that with large scale sequencing capabilities combined with large scale data analysis and computational capabilities and state-of-the-art next generation single cell genomics, researchers can now explore a vast array of cellulosic degrading enzymes from new microbes not tied to the ability to grow them in culture. This may therefore reduce the vast space of “microbial dark matter” that has up to now been difficult to explore. Additionally, the approach used here could be readily extended to searches for other microbial enzyme capabilities of relevance to other DOE missions.

Authors on the paper include Lawrence Berkeley National Laboratory and DOE JGI’s Feng Chen, Rob Egan, Tao Zhang, Susannah Tringe, Axel Visel, Len Pennacchio, Tanja Woyke and Zhong Wang. Other authors include Tae-Wan Kim, Harshal Chokhawala and Douglas S. Clark of the Energy Biosciences Institute, University of California, Berkeley; Gary Schroth and Shujun Luo of Illumina, Inc.; and Roderick I. Mackie of the Energy Biosciences Institute, University of Illinois, Urbana. Matthias Hess is now an assistant professor at Washington State University Tri-Cities in Richland, Washington.

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow DOE JGI on Twitter.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California