DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

    Algae growing in a bioreactor. (Dennis Schroeder, NREL)
    Refining the Process of Identifying Algae Biotechnology Candidates
    Researchers combined expertise at the National Labs to screen, characterize, sequence and then analyze the genomes and multi-omics datasets for algae that can be used for large-scale production of biofuels and bioproducts.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

    Ian Rambo, graduate student at UT-Austin, was a DOE Graduate Student Research Fellow at the JGI
    Virus-Microbe Interactions of Mud Island Mangroves
    Through the DOE Office of Science Graduate Student Research (SCGSR) program, Ian Rambo worked on part of his dissertation at the JGI. The chapter focuses on how viruses influence carbon cycling in coastal mangroves.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

    Integrating JGI Capabilities for Exploring Earth’s Secondary Metabolome
    Natural Prodcast podcast: Nigel Mouncey
    JGI Director Nigel Mouncey has a vision to build out an integrative genomics approach to looking at the interactions of organisms and environments. He also sees secondary metabolism analysis and research as a driver for novel technologies that can serve all JGI users.

    More

News & Publications
Home › News Releases › How Now, Inside the Cow: Nearly 30,000 Novel Enzymes for Biofuel Production Improvements

January 27, 2011

How Now, Inside the Cow: Nearly 30,000 Novel Enzymes for Biofuel Production Improvements

WALNUT CREEK, Calif.—Cows eat grass—this has been observed for eons.  From this fibrous diet consisting mainly of the tough to degrade plant cell wall materials cellulose and hemicellulose, substances of no nutritional value to most animals, ruminants manage to extract all they need to nourish themselves, their progeny and their keepers.   And now, the cow, or rather the network of organisms working unseen in the cow’s forestomach or rumen, is providing researchers with vital information that may someday accelerate the large-scale deployment of biofuels.   This will offer a window into a major category of microbes that has long resisted the attempts of scientists to grow and study.

cow-rumen-jonas

The fistulated cow system allows direct access into the animal’s foregut. This enabled researchers to incubate biomass-containing nylon bags to isolate rumen microbes associated with a defined plant substrate to identify genes and genomes participating in biomass deconstruction. Credit: Jonas Løvaas Gjerstad

Through massive-scale DNA sequencing, researchers at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), with support from the Energy Biosciences Institute (EBI), have characterized the genes and genomes of plant-digesting microbes isolated from the cow rumen and reported in a study published January 28 in the journal Science. One of the challenges associated with developing alternative fuels from plants has been the high cost and energy inputs that are associated with the processing plant biomass so that it can be more easily converted into sugars and from there into biofuels to address our transportation needs.

“Microbes have evolved over millions of years to efficiently degrade recalcitrant biomass,” said Eddy Rubin, Director of the JGI and a lead on this study. “Communities of these organisms can be found in diverse ecosystems, such as in the rumen of cows, the guts of termites, in compost piles, as well as covering the forest floor.  Microbes have solved this challenge, overcoming the plant’s protective armor to secure nutrients, the rich energy source that enables them and the cow to thrive.”

Bovines are thought to have first appeared on the landscape millions of years ago and were domesticated by humans about 10,000 years ago. Rumen microbes evolved to produce molecular machines in the form of enzymes able to efficiently deconstruct plant cell wall polysaccharides such as cellulose and hemicellulose into their constituent small sugar molecules.  Another way of looking at it is that in exchange for housing in the cow rumen, these microbes pay rent by efficiently converting fiber that the cow cannot utilize into small sugar molecules that serve as substrates for fermentation into end-products that provide energy for the cow.  This study has enabled the JGI investigators and collaborators to mine, at a scale thousands of fold greater than in any prior work, the enzymatic capabilities encoded in the genomes of previously uncharacterized rumen microbes. This has deepened our understanding of nearly 30,000 genes generating enzymes that may possess powerful capabilities for degrading biomass into simple sugars, the essential first step in cellulosic biofuel production.

cow-rumen-switchgrass-Tighe

A fragment of switchgrass decomposing in contact with cow rumen microbes. Credit: Damon Tighe, DOE JGI

“Industry is seeking better ways to break down biomass to use as the starting material for a new generation of renewable biofuels,” said JGI Director and project lead Eddy Rubin. “Together with our collaborators, we are examining the molecular machinery used by microbes in the cow to break down plant material.”

Only about one percent of the planet’s microbial species can be readily grown in the laboratory; the vast majority—in the soil, water, and residing in the other larger life forms such as in cows—cannot be cultured in a lab.  “Metagenomic” studies such as this provide an alternative method of analysis.

Rubin’s postdoctoral fellows Matthias Hess and Alex Sczyrba used one of the most promising large-scale bioenergy crops — switchgrass (Panicum virgatum) – and let the cows’ microbial symbionts located in the foregut perform their magic. To better control the process, Hess and his colleagues at the University of Illinois worked with the fistulated cow model that, for scientific research purposes, allows direct access through a tube into the foregut, which can be considered as a fermentation chamber in which oxygen is absent. Instead of feeding the grasses directly to the cows, the switchgrass samples were placed in nylon bags and then inserted into the cow rumen, where they were left to be digested. After 72 hours, the bags were removed, and the DNAs from the microbes involved in digesting the material that were adherent to the switchgrass were isolated and then sequenced.

cow-rumen-switchgrass-eddy

DOE Joint Genome Institute Director Eddy Rubin is the senior author on the January 28, 2011 “Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen.” Credit: David Gilbert, DOE JGI

The amount of data generated for this study of rumen microbes, 270 billion letters of the DNA code, was enormous; about 100-fold greater than the number of letters in the entire human genome.  Generating the data was not the most challenging part of this project, Hess noted. “The real challenge was to analyze the vast amount of data for which no reference genome was available and to identify and produce full-size functional enzymes based solely on information obtained from billions and billions of short snippets of DNA sequences,” he said.

To analyze the information, the researchers developed a genome assembly strategy that could handle the vast amount of data while making sure to avoid misassemblies that would have led to chimeras – artificial genes not present in the microbial community. “Imagine someone mixing hundreds of jigsaw puzzles with millions of pieces each into a big pile,” said Sczyrba. “We tried to put as many of these back together, making as few mistakes as possible. It is not an easy problem. You need a good strategy and a lot of computational resources to solve this problem.

By employing different filters Sczyrba whittled down the number of the more than two million predicted genes to 27,755 candidate genes that encoded a specific category of enzymes called carbohydrate-active enzymes (CAZymes) that can break down plant polysaccharides (e.g. cellulose) into small sugars. Hess identified the most promising candidates, tested a subset of 90 candidate genes for functionality and found that more than 50 percent of the tested candidates had cellulose-degrading activity with almost 20 percent able to break down the “real-world” biofuel crop switchgrass. This made it clear to the team that a significant faction of the 30,000 genes identified are indeed active against plant material and would be a treasure trove of novel enzymes for biofuel researchers.  Hess said that the discovery of these novel enzymes from this one study significantly increased the number of enzymes believed to act on carbohydrates by nearly a third compared to numerous previous studies carried out over decades.

Besides the identification of genes encoding enzymes that might play a major role in future processes for the industrial production of lignocellulosic biofuel, Hess and Sczyrba wanted to assemble not only genes but the entire genomes of organisms involved in biomass breakdown from the rumen. Using various computational puzzle-solving approaches, they were able to build 15 genomes for the rumen microbes, none of which matched anything that had previously been described.

To confirm their computational results the team turned to another way of examining the genomes of microbes that also did not require a culturing step: single cell genomics involving the study of the genome of a single uncultured microbial cell.  They were able to isolate a single rumen microbe using a cell sorter, and without having it grow, they generated the genome of this uncultured microbe using single cell sequencing technology.  When the DNA sequences derived from the single genome were mapped to the 15 computationally assembled genomes, the researchers found that more than 98 percent of the data matched to one single genome that had been assembled in silico. “The single cell data made us confident that what we saw was real,” Hess said. “Otherwise we’d have computational data only, which would have made our work much, much less convincing.”

cow_rumen_illumina

DOE JGI researchers Matthias Hess (middle) and Alexander Sczyrba (right) and Gary Schroth (left) of Illumina, Inc. clutch the hard drive containing the cow rumen metagenome dataset. Credit: David Gilbert, DOE JGI

This pioneering work, led by the JGI and its collaborators, illustrates that with large scale sequencing capabilities combined with large scale data analysis and computational capabilities and state-of-the-art next generation single cell genomics, researchers can now explore a vast array of cellulosic degrading enzymes from new microbes not tied to the ability to grow them in culture. This may therefore reduce the vast space of “microbial dark matter” that has up to now been difficult to explore. Additionally, the approach used here could be readily extended to searches for other microbial enzyme capabilities of relevance to other DOE missions.

Authors on the paper include Lawrence Berkeley National Laboratory and DOE JGI’s Feng Chen, Rob Egan, Tao Zhang, Susannah Tringe, Axel Visel, Len Pennacchio, Tanja Woyke and Zhong Wang. Other authors include Tae-Wan Kim, Harshal Chokhawala and Douglas S. Clark of the Energy Biosciences Institute, University of California, Berkeley; Gary Schroth and Shujun Luo of Illumina, Inc.; and Roderick I. Mackie of the Energy Biosciences Institute, University of Illinois, Urbana. Matthias Hess is now an assistant professor at Washington State University Tri-Cities in Richland, Washington.

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow DOE JGI on Twitter.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

SPRUCE-ing Up Science

mentors and interns for JGI-UC Merced internship program

JGI at 25: Studying Sorghum’s Survival Skills

A graphic showing citations of the Sorghum bicolor reference genome

Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts

Single filament of Ca. Thiomargarita magnifica (Jean-Marie Volland)

Polar Phytoplankton Need Zinc to Cope with the Cold

Photograph of a stream of diatoms beneath Arctic sea ice.

JGI at 25: Solving the Mystery of the Missing Oil

A surface slick in the Gulf of Mexico, taken ~1.5 km from the Deepwater Horizon wellhead (Olivia Mason, LBNL).

JGI at 25: The Human Genome Project, or the JGI’s Origin Story

JGI contributions detailed in DOE Human Genome Project poster
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2022 The Regents of the University of California