DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › JGI to Decode DNA of Destructive Plant Pathogen

October 16, 2002

JGI to Decode DNA of Destructive Plant Pathogen

Backed by nearly $4 million in funding from three Federal agencies, researchers in California and Virginia are joining forces to learn the genetic secrets of a notorious plant pathogen that causes billions of dollars a year in damage to forests and soybean crops.

Scientists at the U.S. Department of Energy’s Joint Genome Institute (JGI) in Walnut Creek and the Virginia Bioinformatics Institute (VBI) in Blacksburg will decode and study the genomes of two species of Phytophthora, which is Greek for “plant devourer.” Phytophthora is a fungus-like microbe responsible for sudden oak death syndrome, soybean root rot, and a wide variety of other destructive plant diseases, including the Irish potato famine in the 1840s.

tree_death

Tree mortality caused by Phytophthora ramorum

By sequencing and comparing the DNA of the two Phytophthora genomes, the scientists hope to uncover clues to virulent diseases that are attacking 17 species of trees on the West Coast, including redwoods, big leaf maples, bay trees and Douglas fir, and causing serious damage to soybean crops in the Midwest and South.

“This is an ideal opportunity for genomics to make an important contribution to solving an enormous national problem,” said JGI Director Eddy Rubin. “By sequencing and studying the gene function of this pathogen, we can accelerate the diagnosis, prevention and treatment of the infections it causes.”

Phytophthora ramorum, the recently identified microbe responsible for sudden oak death, and P. sojae, which causes soybean root rot, resemble fungi but are actually Stramenopiles, a group of oomycetes or “water molds.” Phytophthora microbes resist treatment by conventional pesticides and other fungus control measures. Unless effective treatments are found, foresters are concerned that P. ramorum, which has already killed tens of thousands of trees in California and Oregon, could spread to northern red oak and pin oak forests in the Midwest and East despite quarantines restricting the movement of potentially infected trees (see http://www.na.fs.fed.us/sod/index.htm).

To attack the problem, DOE’s Office of Science has allocated $1.5 million to JGI to draft sequence the P. ramorum genome. In addition, the U.S. Department of Agriculture (USDA) and the National Science Foundation (NSF) have jointly awarded $2.3 million to JGI and VBI to draft sequence P. sojae, which causes more than a billion dollars a year in losses to the worldwide soybean crop.

Dr. Jeffrey Boore, who will lead the research for JGI, said the knowledge gained from sequencing the P. ramorum genome and comparing it with the DNA of P. sojae could lead to better techniques for diagnosing sudden oak death syndrome, such as kits that can be taken to the field that could quickly identify the microbe’s presence in tree samples.

“We can also identify rapidly changing parts of the genome that can be used to track the paths of infection through a forest,” Boore said. “We may also be able to identify specific genes that are necessary for infection and to develop treatments that attack the products of these genes and thus eliminate Phytophthora‘s ability to attack trees.”

P. sojae was chosen for the project because it has a compact genome, and because researchers have been studying its genetics for many years. Dr. Brett Tyler, Dr. Bruno Sobral, and their colleagues at the VBI will provide a genetic map of the P. sojae genome that will be used to assemble the raw DNA sequence data to be produced at JGI.

The draft sequence data from both genomes will be made available to researchers around the world through a web-based bioinformatics annotation system. They will be the first publicly available Stramenopile pathogen genomes.

“Phytophthora pathogens are literally destroyers from a distant (biological) kingdom,” Tyler said. “The genome sequences of these two species will for the first time enable us to identify and target their vulnerabilities in order to control them.”

According to the NSF, the research project is also intended to enhance the interaction between experimental and computational biology by training postdoctoral fellows, undergraduate students and visiting researchers from minority institutions in a multidisciplinary, team-oriented environment.

The NSF and USDA funds were made available through the agencies’ collaborative Microbial Genome Sequencing Program. The DOE funding was provided by the Office of Biological and Environmental Research in DOE’s Office of Science.

The JGI, one of the largest and most productive public genome sequencing centers in the world, is operated jointly by three DOE national laboratories managed by the University of California: Lawrence Berkeley and Lawrence Livermore in California, and Los Alamos in New Mexico. In addition to the Phytophthora projects, the JGI has whole genome sequencing programs that include vertebrates, fungi, plants, bacteria and other single-celled microbes. Additional information and progress reports on JGI projects, including daily updates of sequence information and assembly statistics, are available at www.jgi.doe.gov.

VBI at Virginia Tech is a Commonwealth of Virginia shared resource. In two years, the Institute has combined platforms in biological sciences and information technology to secure more than $25 million in bioinformatics grants and contracts. VBI plays a significant role in understanding host-pathogen-disease interactions from a systems biology perspective. For more information regarding VBI, visit their website at www.vbi.vt.edu

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

iPHoP: A Matchmaker for Phages and their Hosts

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California