DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › DNA of Uncultured Organisms Sequenced Using Novel Single-Cell Approach

April 21, 2009

DNA of Uncultured Organisms Sequenced Using Novel Single-Cell Approach

WALNUT CREEK, CA—Scientists from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and the Bigelow Laboratory for Ocean Sciences have assembled high quality, contamination-free draft genomes of uncultured biodegrading microorganisms using a novel single cell genome sequencing approach. This proof of principle study, published in the April 23 edition of the journal PLoS One, offers researchers a new method to access and decipher the information embedded in genomes of interest with only minute quantities of DNA.

“Most of the microbial genomes sequenced to date are derived from organisms cultured in the laboratory,” said DOE JGI Director Eddy Rubin. “We estimate that roughly 99.9 percent of the microbes that exist on this planet currently elude standard culturing methods, denying us access to their genetic material, so we have to explore other methods to characterize them. The power of single cell genomics is that it offers us the ability to sort out one cell from a complex environmental sample, liberate the DNA from that cell, and enzymatically produce millions of copies of that genome so that we have enough DNA to sequence it and characterize its metabolic potential.

“In its capacity as a national user facility, DOE JGI is dedicated to helping our users expand the utility of genomic information to advance DOE mission-relevant science—and in this particular case, building on our understanding of how the carbon balance is maintained in the ocean.  The single cell approach will be of great interest to many of our users that have problems with accessing their particular target genomes.”

Woyke

Research Scientist Tanja Woyke with a list of single cell sequencing projects at the JGI.

 

Tanja Woyke and her colleagues at the DOE JGI sequenced genomes of two uncultured flavobacteria, marine microorganisms known for their biopolymer degradation capacity. The environmental sample for this work – surface ocean water – was collected in Maine’s Boothbay Harbor. The two flavobacteria were chosen by Bigelow Laboratory collaborators Ramunas Stepanauskas and Michael Sieracki, who are particularly interested in genes encoding proteorhodopsins.

“Proteorhodopsins enable some microbial cells to harness the energy from sunlight in a process that is very different from photosynthesis,” said senior author Stepanauskas.  “Recent metagenomic studies revealed that proteorhodopsins are very abundant and diverse in the ocean. Using our single cell sequencing technology, we are starting to identify the specific group of microorganisms that carry proteorhodopsin genes, and to analyze the genomic context that may shed light on the role of proteorhodopsins in the ocean and their potential in biotechnology.”

A technique called fluorescence activated cell sorting was used by the Bigelow scientists to pick out individual bacterial cells directly from the environmental sample. The single cells were then lysed (blown open) and a process called multiple displacement amplification was applied to make millions of copies of the bacterial genomes for sequencing. The resulting flavobacterial genome sequences are approximately 80 to 90 percent complete, a level sufficient, Woyke said, to prove the utility of the technique. Woyke credited DOE JGI’s Cliff Han and his team at Los Alamos National Laboratory (LANL), which worked on closing gaps in the assembly.

Even though the flavobacteria sequenced are marine organisms, Stepanauskas pointed out that the single cell sequencing approach can be applied to organisms from a number of environments, including those microbial communities inhabiting extreme environments, such as hot pools, contaminated soil, and those constituting the human microbiome. The technique bypasses the need for culturing before sequencing, he said, because only one cell is needed to decode a genome.

“As long as you can isolate a single cell, pick it from the environment, lyse it, you can generate millions of copies of that genome and gain access to the information inside that organism,” Woyke confirmed. “One of the key issues that still needs refining is the lysis step, since many microbes will not lyse with alkaline solutions, the most common agent for the job. But we are actively working on that.”

OLYMPUS DIGITAL CAMERA

Coastal water sample from Boothbay Harbor, Maine collected by Bigelow Laboratory team. Photo courtesy of Ramunas Stepanauskas (Bigelow Laboratory).

The capacity to sequence DNA from a single, uncultured cell was first documented in 2005 at Roger Lasken’s team while he was at the New Haven-based company Molecular Staging, but the technique has yet to yield a completed genome. “If one copy of the genome stays intact, you should theoretically be able to finish a genome from a single cell,” Woyke said. She also noted that other groups are working on pooling identical cells to have a better chance of achieving that goal.

“However, each microbial cell may turn out to be different, that’s just one of the unanswered, basic questions in biology that may be finally addressed by single cell genomics,” added Stepanauskas. “Even without completed genome assemblies, single cell sequencing offers radically new opportunities for the basic research and biotechnology applications of the microbial ‘uncultured majority’.”

Woyke said they are currently working with several DOE JGI collaborators to apply the single cell approach to other organisms of interest. One of the projects involves examining the microbial communities within cow rumen to identify enzymes that break down cellulose from plant material that can be used for next-generation biofuels production.

Other authors on the study include DOE JGI’s Gary Xie, Cliff Han, Hajnalka Kiss, Jimmy Saw, Pavel Senin, and Chi Yang, Alex Copeland and Jan-Fang Cheng. Other collaborating institutions are the University of La Laguna (Spain), the University of Hawaii at Manoa and the National Yang-Ming University (Taiwan).

The U.S. Department of Energy Joint Genome Institute, supported by DOE’s Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup.  DOE JGI, located in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California