DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

News & Publications
Home › Blog › JGI Earth Month: The Unusual Metabolism That Helps Plants Withstand Drought

April 29, 2020

JGI Earth Month: The Unusual Metabolism That Helps Plants Withstand Drought

In April 2020, we mark both the 50th celebration of Earth Day on April 22, and DNA Day on April 25. As both Earth and DNA are close to our JGI hearts, we’re highlighting genomic science research that feels especially relevant to living on a changing planet.

JGI Earth Month 2020

As part of JGI Earth Month, listen to this brief audio production featuring University of Hawai’i at Mānoa plant biologist Karolina Heyduk.

Transcript for Audio

 

ALISON: Hey! I’m Alison Takemura at the US Department of Energy Joint Genome Institute, or JGI. 

Two special days occur in April: the 50th celebration of Earth Day on April 22, and DNA Day on April 25. Since both DNA and the Earth are close to our JGI hearts, we’re featuring some scintillating genomic science research that feels especially relevant to living on a changing planet.

Karolina Heyduk, an evolutionary plant biologist at the University of Hawai'i at Mānoa shares how crassulacean acid metabolism, or CAM, helps plants take the heat. (Courtesy of Karolina Heyduk)
Karolina Heyduk, an evolutionary plant biologist at the University of Hawai’i at Mānoa, shares how crassulacean acid metabolism, or CAM, helps plants take the heat. (Nancy Evelyn)

In this short audio production, we’ll hear from Karolina Heyduk, an evolutionary plant biologist at the University of Hawai’i at Mānoa. I recently caught up with Karolina at the Plant and Animal Genomes, or PAG conference, when in-person meetings were still a thing, i.e. in January. She talked about her Community Science Project proposal with JGI, in which she’s studying a special kind of plant metabolism. This metabolism, called crassulacean acid metabolism, or CAM — that’s C-A-M, for short — helps plants that have it lose less water in a hot, dry environment. Figuring out how plants evolved to deal with hot and dry conditions could help us to one day develop plants that are more drought-tolerant. These kinds of innovations are particularly relevant as climate change intensifies and accelerates drought and desertification across the globe. 

Karolina and I kicked off our conversation with a quick recap of how plants, in general, work.

Soaptree yucca (Yucca elata) is a C3 species. (Courtesy of Karolina Heyduk)
Soaptree yucca (Yucca elata) is a C3 species. (Karolina Heyduk)

KAROLINA: We all know plants take up water through their roots. But for them to be able to pull that water through the whole plant system, they need to open these pores in their leaves called stomata. And through those pores, water is moved into the atmosphere basically along its concentration gradient. So, the movement of water through stomata is really important. And when those stomata are open, it’s the same pore in the leaf through which carbon dioxide enters the leaf for photosynthesis. 

ALISON: Photosynthesis is what allows plants to make their own food from light and air — in particular, the part of the air that’s carbon dioxide.

KAROLINA: When plants get really hot or dry, they want to close those stomata to prevent water loss, but that also prevents CO2 from coming into the leaf and it basically starves the plants. 

ALISON: That’s what might happen for a stressed typical plant, one that does what’s called C3 metabolism, named for a 3-carbon compound that plays an essential role. But other plants, which do CAM, can kind of clam up during the day, and open their stomata at night to absorb CO2 when it’s cooler. That way, they don’t lose all their water, and they still get the carbon dioxide they need.

Spanish dagger (Yucca schidigera) performs CAM. (Courtesy of Karolina Heyduk)
Spanish dagger (Yucca schidigera) performs CAM. (Karolina Heyduk)

Karolina is working to better understand what genetic features make CAM possible. So, she’s studying yuccas, a group of plants in the Agave family with fleshy, sword-like leaves, often with spikes along their edges.

KAROLINA: My work with the JGI focuses on a group of plants called yuccas. If you know Joshua Tree, that’s an example of a yucca species. And the cool thing about yuccas is that there are closely related species that use C3 and CAM.

ALISON: But plants don’t need to be restricted to either CAM or C3 metabolism. Karolina says plants can be somewhere in between. 

KAROLINA: Plants can use a little bit of both pathways. Some plants can appear to be almost entirely C3, and then when they get drought stressed, they can up-regulate that CAM. There are all sorts of other intermediate phenotypes where plants are using a little bit of both of the pathways. 

ALISON: Karolina studies these CAM-C3 hybrids.

Yucca gloriosa exhibits the intermediate traits of a CAM-C3 hybrid. (Courtesy of Karolina Heyduk)
Yucca gloriosa exhibits the intermediate traits of a CAM-C3 hybrid. (Karolina Heyduk)

KAROLINA: Some of these hybrid genotypes that I look at can preferentially up-regulate CAM when they’re drought stressed, whereas others don’t seem to be able to. So, it allows us to be able to tease apart some of the mechanisms that regulate that response to drought through CAM. 

ALISON: We’ll hear more about CAM and Karolina’s quest in a future episode of our JGI podcast, Genome Insider.

I’m Alison Takemura. See you next time.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Blog Tagged With: JGI Earth Month

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

JGI on the 2020 Highly Cited Researchers List

2020 Highly Cited Researchers at the JGI

Tanja Woyke Awarded van Niel International Prize for Studies in Bacterial Systematics

Tanja Woyke JGI

Harnessing JGI’s Metabolomics Capabilities

JGI engagement webinar:harnessing metabolomics capabilities

UC Merced Interns Reflect on Their JGI Summer Projects

Screencap Axel Visel intro video

JGI Welcomes New UEC Members

(left to right) Kathleen Greenham of the University of Minnesota, Matthias Hess of the University of California, Davis and Kristen DeAngelis of University of Massachusetts-Amherst,

The JGI Data Portal: Improving User Experience

JGI Data Portal screencap
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California