DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › How yeast formations got started

August 14, 2014

How yeast formations got started

Comparative analyses reveal gene family conserved across multiple yeast lineages.

The Science:

Researchers conducted a comparative analysis of nearly 60 fungal genomes to determine the genetic traits that enabled the convergent evolution of yeasts.

Cryptococcus neoformans giant cell SEM

Scanning electron microscopy image of a giant cell of the fungal pathogen Cryptococcus neoformans, one of the yeasts studied in this analysis. (PLoS Pathogens Issue Image. Vol. 6(6) June 2010. PLoS Pathog 6(6): ev06.i06. doi:10.1371/image.ppat.v06.i06)

The Impact:

The analyses suggest that a conserved zing-finger transcription factor family allowed yeasts to become the dominant form in multiple fungal clades. This “parallel deployment” is not consistent with the classical notion of convergent evolution.

Summary

Yeasts are found in multiple fungal clades and one of the most familiar is Saccharomyces cerevisiae, used both in food preparation and as a model organism for developing biofuels. While many yeasts have a unicellular form, several yeasts can also take the form of filamentous fungi. Despite their divergent lineages, yeasts have many phenotypic and metabolic similarities. To learn more about the convergent evolution of yeasts, a team including researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, and several longtime DOE JGI collaborators, conducted a comparative analysis of nearly 60 fungal genomes. Their findings appeared ahead online July 18, 2014 in Nature Communications.

Many of the genomes used in the study were sequenced and analyzed at the DOE JGI. For the study, the team developed a computational pipeline called COMPARE or comparative phylogenomic analysis of trait evolution in order to identify genes that had been inherited from a shared ancestor (orthologous genes) and determine gene duplications or losses on charted phylogeny trees. The team pegged the origin for the potential of yeast-like growth at some 770 million years ago. They also noted several gene classes that were conserved, likely due to their roles in essential processes such as DNA replication and multicellular growth.

“We suggest that the genetic toolkit for yeast-like growth has been added on top of the eukaryote cell division programme early in fungal evolution and has been widely conserved throughout fungal evolution,” the team wrote. “This finding explains the widespread occurrence of yeasts and dimorphic fungi with remarkably similar yeast phases among phylogenetically diverse fungal groups.”

In particular, they identified several genes across the species related to a single transcription factor (TF) family called Zn-cluster TFs. This family, they noted, regulates processes such as the ability to change forms from yeasts to filamentous fungi. They suggest that this mechanism may be involved in the convergent evolution, or the process in which different organisms that not closely related will independently evolve similar traits that serve similar functions, of the yeast phenotype.

Contact

Igor Grigoriev
DOE Joint Genome Institute
ivgrigoriev@lbl.gov

Funding

  • U.S. Department of Energy Office of Science
  • Hungarian Academy of Sciences
  • Lab of Excellence ARBRE

Publication

Nagy LG et al. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat. Commun. 2014 July 18;(5):4471. doi: 10.1038/ncomms5471

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

Soil virus offers insight into maintaining microorganisms

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California