DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

User Programs
Home › Featured Profiles › Trina McMahon, University of Wisconsin-Madison

November 26, 2013

Trina McMahon, University of Wisconsin-Madison

Trina McMahon, UW Madison

Click here to watch Trina McMahon’s talk from the DOE JGI 2017 Genomics of Energy & Environment Meeting.

  • Professor of Bacteriology, Professor of Civil and Environmental Engineering, McMahon Lab, University of Wisconsin-Madison
  • Collaborated with JGI since 2005

We have worked together on projects related to sewage treatment and freshwater lakes. Activated sludge wastewater treatment processes are used throughout the world to purify trillions of gallons of sewage annually. Many treatment plants employ specialized bacteria to remove the nutrient phosphorus, in an effort to protect lakes and rivers from eutrophication, a deterioration of water quality characterized by excessive algae blooms. Accumulibacter play a vital role in wastewater management, accumulating massive amounts of phosphorus inside their cells. This research resulted in a publication in the journal Nature Biotechnology.

Our work on freshwater lakes has focused on naturally occurring bacteria that cycle carbon and nutrients, providing critical ecosystem services related to water quality. We are studying the ecology and evolution of these bacteria in an effort to eventually predict how they will behave under changing climate and land use conditions.

Views from Our User Community: Trina McMahon, University of Wisconsin-Madison

Katherine “Trina” D. McMahon, Professor of Bacteriology, Professor of Civil and Environmental Engineering, McMahon Lab, University of Wisconsin-Madison

The scale of wastewater treatment in the US is daunting–on the scale of tens of billions gallons are treated daily. When these facilities fail, it can result in serious pollution of lakes, rivers, and estuaries, with untreated phosphorous, carbon, and nitrogen–the detritus of human activities–necessitating costly and environmentally-taxing remedies and exposing the public to potential disease hazards. Even a marginal improvement in the process would translate into huge savings and spell relief for environmental engineers. Naturally occurring bacteria in freshwater lakes play a critical role in carbon and nutrient cycles, with direct impacts on water quality. A fundamental understanding of how they control these cycles is required in order to effectively manage our waterways for human use and environmental health.

Most of the core work conducted in our lab would be impossible without JGI. We have several federally funded projects that depend entirely on sequence data generated at JGI and the amazing support of JGI scientists. We work closely with postdocs and scientists to develop new analysis tools and to interpret our results. Several of my students have visited JGI for short internships and I am fortunate to be able to visit and meet regularly with their expert staff. IMG/M is a phenomenal tool that underpins much of what we do, but we also conduct our own analyses using our own computational resources with assistance from JGI staff. Our sequencing projects regularly push the boundaries of JGI’s informatics capacities and we are delighted to help with development of new workflows that can ingest the ever-increasing sizes of our datasets.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Featured Profiles

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Kelly Wrighton, Colorado State University

Kelly Wrighton JGI value cropped screencap

Tobias Erb, Max Planck Institute for Terrestrial Microbiology

Tobias Erb, MPI Marburg (Courtesy of Tobias Erb)

Colleen Hansel, Woods Hole Oceanographic Institute

Colleen Hansel, fungal collaborator at WHOI

J. Chris Pires, University of Missouri

J. Chris Pires, University of Missouri

Cat Adams, University of California, Berkeley

Cat Adams, UC Berkeley

C. Titus Brown, University of California, Davis

C. TItus Brown, UC Davis on collaborating with the JGI
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California