DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Treading into a Gray Area Along the Spectrum of Wood Decay Fungi

June 23, 2014

Treading into a Gray Area Along the Spectrum of Wood Decay Fungi

One of the most basic rules for playing the game “Twenty Questions” is that all of the questions must be definitively answered by either “yes” or “no.” The exchange of information allows the players to correctly guess the item in question.

still of Igor Grigoriev in fungal video

Igor Grigoriev and other DOE JGI Fungal Program collaborators appear in a short video at http://bit.ly/JGI-Fungal-vid.

Fungal researchers have been using a variation of Twenty Questions to determine if wood-decaying fungi fall under one of two general classes. If a fungus can break down all the components – cellulose, hemicellulose and lignin – of plant cell walls it is considered a white rot fungus. If a fungus can only break down cellulose and hemicellulose but not lignin, they classify it as a brown rot fungus. Known white rot fungi produce certain lignin-degrading enzymes called class II peroxidases (PODs) and a variety of enzymes that go after crystalline cellulose.

In a study published online the week of June 23, 2014 in the Proceedings of the National Academy of Sciences, a team led by U.S. Department of Energy Joint Genome Institute (DOE JGI) fungal researchers suggests that categorizing wood-decaying fungi as either white rot or brown rot may not be as clear-cut as previously thought. The discovery complicates but also broadens the range of fungal decay strategies to be explored for commercializing the process of biofuels production.

This finding emerged after researchers analyzed 33 basidiomycete fungal genomes, 22 of which are wood decayers, four of which had been recently sequenced by the DOE JGI. Based on previously sequenced genomes, the team observed that two of the new fungi, Botryobasidium botryosum and Jaapia argillacea, had the cellulose-attacking enzymes characteristic of white rot fungi, but lacked PODs, making them similar to brown rot fungi. Applying a statistical process called Principal Components Analysis (PCA) to find similarities in fungi based on their plant biomass degrading genes, they found that the two new fungi grouped close to Phanerochaete chrysosporium, the first white rot species sequenced. This was a curious finding because the new fungi were phylogenetically distant from P. chrysosporium, and, moreover, didn’t have PODs.

white rot Botryobasidium botryosum on aspen

The white rot Botryobasidium botryosum was one of four fungi whose genomes were recently sequenced as part of  the study published the week of June 23, 2014. The researchers grew the fungus on aspen wood and in localized areas, it broke down the cell walls and removed cellulose, hemicellulose and lignin, leaving large gaps in the structure. (Benjamin Held, University of Minnesota)

The team then grew isolates of B. botryosum and J. argillacea on pine and aspen wood. They found that the fungi superficially degraded the wood surfaces but in localized areas, went further and broke down the cell walls and removed cellulose, hemicellulose and lignin.

“[They] show similarities to white rot fungi in … all predicted carbohydrate- and lignin-active enzymes and can degrade all components of wood, but they do so without the PODs that are a hallmark of white rot,” the team reported in their paper. They also found a correlation between secondary metabolism genes, which are crucial for fungal survival, and brown rot fungi. These results, they added, suggest that the perceived dichotomy of white rot and brown rot is too simplistic and suggest that fungal wood decay capabilities be categorized instead on a continuum.

DOE JGI Fungal Genomics head Igor Grigoriev noted this wasn’t the first time they’d seen a genome that appeared to blur the definitions between white rots and brown rots. “We thought we saw an anomaly with a previously sequenced white rot fungus Schizophyllum commune,” he said. “Now we see a trend. This is the value of having multiple data points and so many fungal genome sequences. This is the whole point of doing fungal genomics at scale.”

Dan Eastwood, a fungal researcher at Swansea University who was not involved in the study, pointed out that fungi don’t have to follow rules to exhibit a decay form. “The manuscript is very timely and provides evidence for what many people in the field have suspected for some time – that simple descriptors of wood decomposition do not necessarily reflect the diversity in decay strategies exhibited by fungi,” he said. “This is particularly the case when discussing the brown rot wood decay mechanism where distantly related species have evolved superficially similar decay mechanisms. This manuscript uses whole genome sequence information to outline the argument for advancing our understanding of wood decomposition away from a simplistic white versus brown rot dichotomy.”

white rot Jaapia argillacea on pine

The white rot Jaapia argillacea was another of the four fungi whose genomes were recently sequenced as part of the study. It has characteristics of a white rot fungus but not all of the expected traits. Researchers grew the fungus on pine wood and it broke down the cell walls in localized areas, removing the cellulose, hemicellulose and lignin. (Benjamin Held, University of Minnesota)

“This is the first time we see patterns of white rot without this particular enzyme,” Grigoriev added. “That tells us these fungi degrade lignin using other means, which tells us POD is not the only marker for white rot. Now that it’s clear that it’s not the only player, we should broaden our search for enzymes that have bioenergy applications. It is important to identify a whole range of enzymes sourced from nature that can be used to develop second-generation biofuels in terms of breaking down lignin and other components in plant cell walls.”

Eastwood added that the work allows researchers to start to understand decay strategies in complex habitats. “Wood is a complex substrate in a complex environment,” he said. “Evolution of decay mechanisms will be complex also, and the diversity in gene compliment will reflect the polyphyletic nature of superficially similar decay strategies. The future challenges are to better define the chemical environment during wood decomposition in conjunction with enzyme activity of different species that appropriately reflect their specific ecology.”

For more information about the DOE JGI Fungal Program, view the short video at http://bit.ly/JGI-Fungal-vid.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California