DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

News & Publications
Home › News Releases › Tracking Antarctic Adaptations in Diatoms

January 16, 2017

Tracking Antarctic Adaptations in Diatoms

Comparative genome analysis provides clues on how climate change might impact evolutionary adaptation limits

Scanning electron micrograph of two cells of Fragilariopsis cylindrus. Shown are two silica shells (Frustules) in valve view. Magnification: 15,000X; scale bar: 5 μm (Image credit: Gerhard S. Dieckmann)

Scanning electron micrograph of two cells of Fragilariopsis cylindrus. Shown are two silica shells (Frustules) in valve view. Magnification: 15,000X; scale bar: 5 μm (Image credit: Gerhard S. Dieckmann)

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. This leads to a significant amount of sequestered carbon ending up in the sediments at the bottom of the ocean. In both freshwater and marine ecosystems, the base of the food web is comprised of a diverse community of phytoplankton that includes diatoms who can thrive in a wide range of temperatures. In the Southern or Antarctic Ocean, large populations of a particular diatom, Fragilariopsis cylindrus, dominate the phytoplankton communities.

To learn more about how F. cylindrus adapted to its extremely cold environment, a team led by University of East Anglia (UEA) scientists in Norwich, England conducted a comparative genomic analysis involving three diatoms by tapping expertise from the U.S. Department of Energy Joint Genome Institute (DOE JGI), who conducted all sequencing and annotation. The results, reported online January 16, 2017 in the journal Nature, provided insights into the genome structure and evolution of F. cylindrus, as well as this diatom’s role in the Southern Ocean. Of particular interest was that F. cylindrus, which is diploid (it has two copies of each chromosome, thus two versions of each gene) can selectively express the variant best suited to helping it deal with its environment. This provides additional genome-rooted resilience to the organism as its environment changes.

“Many species including phytoplankton are endemic to the Southern Ocean,” said Thomas Mock of UEA, who led the study. “They have evolved over millions of years to be able to cope with this extreme and very variable environment. How they did that is largely unknown. Thus our data provide first insights into how these key organisms underpinning one of the largest and unique marine ecosystems on Earth have evolved.”

To thrive in the Southern Ocean, F. cylindrus has to be responsive to a wide variety of conditions including darkness, freezing and thawing temperatures, and varying levels of carbon dioxide and iron. For example, like many phytoplankton, F. cylindrus gets trapped with the sea ice in the winter and is released in the summer when most of the sea ice melts.

Photograph of sea-ice flows (upside down) from the Ross Sea (At McMurdo Research Station), Southern Ocean. Brown color is caused by dense populations of mainly diatoms at the interphase between sea ice and sea water including the species Fragilariopsis cylindrus. (Image credit: James A. Raymond)

Photograph of sea-ice flows (upside down) from the Ross Sea (at McMurdo Research Station), Southern Ocean. Brown color is caused by dense populations of mainly diatoms at the interphase between sea ice and sea water including the species Fragilariopsis cylindrus. (Image credit: James A. Raymond)

The 60-million basepair (Megabase or Mb) genome of F. cylindrus was sequenced as part of the DOE JGI’s 2007 Community Science Program portfolio. The initial version of genome assembly was available by 2010, analyzing the genome required six more years and multiple groups, including genomicists and population geneticists. For the comparative analysis, its genome was compared against those of the diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, both found in temperate oceans with higher concentrations of dissolved iron. These diatom genomes were previously reported by the DOE JGI.

The analysis revealed nearly a quarter of the F. cylindrus genome contained highly diverged alleles, copies of the same genes found in the other diatoms, but which had diverged by accumulating mutations. The team found that this allelic divergence seems to coincide with the last glacial period, which started some 110,000 years ago. “It was remarkable to find that different alleles of the same genes diverge and evolve to respond to various environmental factors,” said Igor Grigoriev, DOE JGI Fungal Genomics head and senior study author.

Mock noted the team also found many genes “unique” to F. cylindrus, such as ice-binding proteins and rhodopsin. He added they observed many proteins with zinc domains, due to the high concentration of zinc in the Southern Ocean, which had not been found in any other phytoplankton genome. The zinc binding protein family appears to have expanded within the last 30 million years.

“Finding that the F. cylindrus population maintains and supports extensive variation in order to provide the adaptive ability of the population under harsh environmental conditions has broad implications for our understanding of natural populations to changing environmental conditions,” said Jeremy Schmutz, head of the DOE JGI’s Plant Program and a study co-author. “On an individual genotype level, the observed switching of expression from one haplotype copy of the gene to the other haplotype copy under changing conditions demonstrates the complexity of survival mechanisms present in nature for translating available genomic variation and content to environmental response. For most diploid eukaryotic organisms, we have considered the separate haplotypes as largely redundant, and generated a single haplotype reference, but it appears in the case of F. cylindrus the major variation in the two haplotypes is vital to the survival and adaptation of the species and may contain variations in regulatory content. This will likely change the way the genomic techniques and assays are applied by the community to ocean dwelling eukaryotic species.”

Thomas Mock will be speaking at the DOE JGI 12th Annual Genomics of Energy & Environment Meeting, set for March 20-23, 2017 in Walnut Creek, Calif. Click here to see the list of confirmed speakers and to register for the event.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

An Automated Tool for Assessing Virus Data Quality

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

A One-Stop Shop for Analyzing Algal Genomes

Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)

Uncovering Novel Genomes from Earth’s Microbiomes

Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)

2021 JGI Proposal Call Brings New Investigators into Community Science Program

Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)

Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet

Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)

The More the Merrier: Making the Case for Plant Pan-genomes

Brachypodium distachyon, the model species for temperate cereals and biofuel crop grasses with a growing pangenome of one hundred genomes. Spain: Huesca, Ibieca, San Miguel de Foces. (Photography credits: Pilar Catalán)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California