DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › Tracking Antarctic Adaptations in Diatoms

January 16, 2017

Tracking Antarctic Adaptations in Diatoms

Comparative genome analysis provides clues on how climate change might impact evolutionary adaptation limits

Scanning electron micrograph of two cells of Fragilariopsis cylindrus. Shown are two silica shells (Frustules) in valve view. Magnification: 15,000X; scale bar: 5 μm (Image credit: Gerhard S. Dieckmann)

Scanning electron micrograph of two cells of Fragilariopsis cylindrus. Shown are two silica shells (Frustules) in valve view. Magnification: 15,000X; scale bar: 5 μm (Image credit: Gerhard S. Dieckmann)

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. This leads to a significant amount of sequestered carbon ending up in the sediments at the bottom of the ocean. In both freshwater and marine ecosystems, the base of the food web is comprised of a diverse community of phytoplankton that includes diatoms who can thrive in a wide range of temperatures. In the Southern or Antarctic Ocean, large populations of a particular diatom, Fragilariopsis cylindrus, dominate the phytoplankton communities.

To learn more about how F. cylindrus adapted to its extremely cold environment, a team led by University of East Anglia (UEA) scientists in Norwich, England conducted a comparative genomic analysis involving three diatoms by tapping expertise from the U.S. Department of Energy Joint Genome Institute (DOE JGI), who conducted all sequencing and annotation. The results, reported online January 16, 2017 in the journal Nature, provided insights into the genome structure and evolution of F. cylindrus, as well as this diatom’s role in the Southern Ocean. Of particular interest was that F. cylindrus, which is diploid (it has two copies of each chromosome, thus two versions of each gene) can selectively express the variant best suited to helping it deal with its environment. This provides additional genome-rooted resilience to the organism as its environment changes.

“Many species including phytoplankton are endemic to the Southern Ocean,” said Thomas Mock of UEA, who led the study. “They have evolved over millions of years to be able to cope with this extreme and very variable environment. How they did that is largely unknown. Thus our data provide first insights into how these key organisms underpinning one of the largest and unique marine ecosystems on Earth have evolved.”

To thrive in the Southern Ocean, F. cylindrus has to be responsive to a wide variety of conditions including darkness, freezing and thawing temperatures, and varying levels of carbon dioxide and iron. For example, like many phytoplankton, F. cylindrus gets trapped with the sea ice in the winter and is released in the summer when most of the sea ice melts.

Photograph of sea-ice flows (upside down) from the Ross Sea (At McMurdo Research Station), Southern Ocean. Brown color is caused by dense populations of mainly diatoms at the interphase between sea ice and sea water including the species Fragilariopsis cylindrus. (Image credit: James A. Raymond)

Photograph of sea-ice flows (upside down) from the Ross Sea (at McMurdo Research Station), Southern Ocean. Brown color is caused by dense populations of mainly diatoms at the interphase between sea ice and sea water including the species Fragilariopsis cylindrus. (Image credit: James A. Raymond)

The 60-million basepair (Megabase or Mb) genome of F. cylindrus was sequenced as part of the DOE JGI’s 2007 Community Science Program portfolio. The initial version of genome assembly was available by 2010, analyzing the genome required six more years and multiple groups, including genomicists and population geneticists. For the comparative analysis, its genome was compared against those of the diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, both found in temperate oceans with higher concentrations of dissolved iron. These diatom genomes were previously reported by the DOE JGI.

The analysis revealed nearly a quarter of the F. cylindrus genome contained highly diverged alleles, copies of the same genes found in the other diatoms, but which had diverged by accumulating mutations. The team found that this allelic divergence seems to coincide with the last glacial period, which started some 110,000 years ago. “It was remarkable to find that different alleles of the same genes diverge and evolve to respond to various environmental factors,” said Igor Grigoriev, DOE JGI Fungal Genomics head and senior study author.

Mock noted the team also found many genes “unique” to F. cylindrus, such as ice-binding proteins and rhodopsin. He added they observed many proteins with zinc domains, due to the high concentration of zinc in the Southern Ocean, which had not been found in any other phytoplankton genome. The zinc binding protein family appears to have expanded within the last 30 million years.

“Finding that the F. cylindrus population maintains and supports extensive variation in order to provide the adaptive ability of the population under harsh environmental conditions has broad implications for our understanding of natural populations to changing environmental conditions,” said Jeremy Schmutz, head of the DOE JGI’s Plant Program and a study co-author. “On an individual genotype level, the observed switching of expression from one haplotype copy of the gene to the other haplotype copy under changing conditions demonstrates the complexity of survival mechanisms present in nature for translating available genomic variation and content to environmental response. For most diploid eukaryotic organisms, we have considered the separate haplotypes as largely redundant, and generated a single haplotype reference, but it appears in the case of F. cylindrus the major variation in the two haplotypes is vital to the survival and adaptation of the species and may contain variations in regulatory content. This will likely change the way the genomic techniques and assays are applied by the community to ocean dwelling eukaryotic species.”

Thomas Mock will be speaking at the DOE JGI 12th Annual Genomics of Energy & Environment Meeting, set for March 20-23, 2017 in Walnut Creek, Calif. Click here to see the list of confirmed speakers and to register for the event.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California