DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

All JGI Features
Home › Items tagged with: PNNL

Content Tagged "PNNL"

Page 1 of 212»

March 2, 2012

Elucidating bacteria’s roles in ant fungal gardens

Leafcutter ants cultivate fungal gardens that serve as their primary food source. Working toward the goal of harnessing novel enzymes for breaking down plant biomass to produce cellulosic biofuels, Great Lakes Bioenergy Research Center (GLBRC) researchers have been studying the process by which the fungi break down the plant leaves harvested by the ants and… [Read More]

January 13, 2012

A toolkit for T. reesei

The availability of an organism’s genome sequence is useful for improving downstream applications such as large-scale biofuel production, but it is only the first step on this path. In the case of the fungus Trichoderma reesei, whose genome sequence was published by the DOE JGI in 2008, the cellulases in T. reesei have multiple industrial… [Read More]

May 31, 2011

A.niger genome project on The Bioenergy Site

Published online ahead of print May 4, 2011 in Genome Research, a team led by Scott Baker of the Pacific Northwest National Laboratory compared the genome sequences of two Aspergillus niger strains to, among other things, better harness its industrial potential in biofuels applications. As more than a million tons of citric acid are produced annually, the production… [Read More]

May 20, 2011

Fungal lessons for large-scale “green” chemical production

The chemical compound citric acid has been produced on a large-scale basis for decades with the help of the filamentous fungus Aspergillus niger. The fungus also has enzymes that can be used to help break down plant cell walls for biofuel production, and it plays a key role in the carbon cycle. Aspergillus niger (Sue… [Read More]

March 18, 2011

Toward a Genomic Encyclopedia of Fungi

Fungi are key components of terrestrial ecosystems and help maintain the interactions between a myriad of species of animals, plants and bacteria that make up these environments. With the ability to thrive in a wide variety of ecological niches, fungi are essential to the global carbon cycle, and the enzymes and metabolites they produce are… [Read More]

October 7, 2009

Shewanella research on ScienceDaily

Researchers have completed the first thorough, system-level assessment of the diversity of an environmentally important genus of microbes known as Shewanella. Microbes belonging to that genus frequently participate in bioremediation by confining and cleaning up contaminated areas in the environment. The team of researchers from the Georgia Institute of Technology, Michigan State University and the… [Read More]

September 24, 2009

T. reesei research on ISA’s InTech

During World War II, Trichoderma reesei frustrated American Army quartermasters in the South Pacific by speeding up the rate at which canvas supplies wore out. Now the same fungus is a key producer of industrial enzymes that break down biomass for biofuel production. In 50 short years, the fungus has gone from being the bane… [Read More]

September 14, 2009

T. reesei work on MycoRant

A recent post at sciencedaily.com, Fungal Map Of Mutations Key To Increasing Enzyme Production For Bioenergy Use, discussed once again the use of Trichoderma reesei as a possible biofuel producer. This time some work at Pacific Northwest National Laboratory (PNNL) was mentioned. “We want to understand the path that we’ve taken to high enzyme production… [Read More]

September 9, 2009

Shewanella research on Environmental Protection

Researchers have completed the first thorough, system-level assessment of the diversity of an environmentally important genus of microbes known as Shewanella. Microbes belonging to that genus are used to confine and clean up contaminated areas in the environment. The team of researchers from the Georgia Institute of Technology, Michigan State University and the Pacific Northwest… [Read More]

September 7, 2009

T. reesei research on R&D Daily

Now an international team of researchers led by scientists at the DOE Joint Genome Institute (JGI), the French applied research center IFP—particularly concerned with renewable resources and energies—and the Vienna Univ. of Technology (TU Vienna) provides the first genome-wide look at what these mutations are in order to understand just how cellulase production was first… [Read More]
Page 1 of 212»

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California