DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

    The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)
    From Competition to Cooperation
    By comparing 135 fungal sequenced genomes, researchers were able to carry out a broader analysis than had ever been done before to look at how saprotrophs have transitioned to the symbiotic lifestyle.

    More

    Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)
    A Grass Model to Help Improve Giant Miscanthus
    The reference genome for M. sinensis, and the associated genomic tools, allows Miscanthus to both inform and benefit from breeding programs of related candidate bioenergy feedstock crops such as sugarcane and sorghum.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    Scanning electron micrographs of diverse diatoms. (Credits: Diana Sarno, Marina Montresor, Nicole Poulsen, Gerhard Dieckmann)
    Learn About the Approved 2021 Large-Scale CSP Proposals
    A total of 27 proposals have been approved through JGI's annual Community Science Program (CSP) call. For the first time, 63 percent of the accepted proposals come from researchers who have not previously been a principal investigator on an approved JGI proposal.

    Read more

    MiddleGaylor Michael Beman UC Merced
    How to Successfully Apply for a CSP Proposal
    Reach out to JGI staff for feedback before submitting a proposal. Be sure to describe in detail what you will do with the data.

    Read more

    Click on the image or go here to watch the video "Enriching target populations for genomic analyses using HCR-FISH" from the journal Microbiome describing the research.
    How to Target a Microbial Needle within a Community Haystack
    Enabled by the JGI’s Emerging Technologies Opportunity Program, researchers have developed, tested and deployed a pipeline to first target cells from communities of uncultivated microbes, and then efficiently retrieve and characterize their genomes.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Publications
    • Scientific Posters
    • Newsletter
    • Logos and Templates
    • Photos
    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

    The Brachypodium distachyon-B. stacei-B. hybridum polyploid model complex. (Illustrations credits: Juan Luis Castillo)
    The More the Merrier: Making the Case for Plant Pan-genomes
    Crop breeders have harnessed polyploidy to increase fruit and flower size, and confer stress tolerance traits. Using a Brachypodium model system, researchers have sought to learn the origins, evolution and development of plant polyploids. The work recently appeared in Nature Communications.

    Read more

Our Science
Home › Science Highlights › Succulent Genes for Water Use Efficiency

December 1, 2017

Succulent Genes for Water Use Efficiency

Comparative genomics identifies sequences involved in photosynthesis under reduced water conditions.  

The Science

In Nature Communications, researchers sequenced and analyzed the genome of Kalanchoe fedtschenkoi (lavender scallops) to better understand how this plant transitioned from C3 to CAM photosynthesis. (Forest and Kim Starr, Flickr CC BY 2.0)

In Nature Communications, researchers sequenced and analyzed the genome of Kalanchoë fedtschenkoi (lavender scallops) to better understand how this plant transitioned from C3 to CAM photosynthesis. (Forest and Kim Starr, Flickr CC BY 2.0)

In the presence of sufficient water and light, most plants conduct photosynthesis through what is known as the C3 pathway. As plants spread out and adapted to live in a variety of environments, they developed alternate photosynthesis pathways, known as C4 and CAM, to make use of limited nutrients. To understand how many plant lineages have independently transitioned from C3 to CAM photosynthesis, researchers sequenced and analyzed the genome of Kalanchoë fedtschenkoi (lavender scallops). Comparing this plant’s genome to those of other plants that also conduct CAM photosynthesis allowed the team to identify the genes and protein sequences involved in its evolution to a flowering plant that efficiently uses limited water resources to conduct photosynthesis.

The Impact

Kalanchoë is a model plant for eudicots, a term applied to one of the largest group of flowering plants that includes coffee, bean and sunflower. As the first CAM eudicot to have its genome sequenced, Kalanchoë offers researchers a reference to trace the evolution of CAM photosynthesis in this group. Understanding how the CAM photosynthesis pathway evolved in plants would enable researchers to engineer a C3 to CAM photosynthesis pathway to improve crop yields for fuel or food applications on arid or marginal lands.

Summary

In the presence of abundant water and sunlight, most plants conduct photosynthesis using what is known as the C3 pathway. Some plants can conduct C4 photosynthesis in water-limited conditions; a different enzyme collects carbon dioxide from the air to form a 4-carbon chain that lends itself to the pathway name. In water-poor conditions, some plants collect and process carbon at night rather than during the day through crassulacean acid metabolism (CAM) photosynthesis, named for its discovery in succulents. In the December 1, 2017 issue of Nature Communications, a team led by Oak Ridge National Laboratory researchers and including scientists at the Joint Genome Institute, a DOE Office of Science User Facility, sequenced and analyzed the genome of Kalanchoë fedtschenkoi to better understand how this plant transitioned from C3 to CAM photosynthesis. CAM photosynthesis is found across 36 plant families and is thought to have evolved independently from multiple C3 lineages. As the first CAM eudicot to have its genome sequenced, K. fedtschenkoi offers researchers an emerging model to trace the evolution of CAM photosynthesis through these plant lineages.

Using recently sequenced genomes of related CAM plants – the pineapple and the moth orchid – the team identified sequences involved in the evolution of plant lineages. They found changes in protein sequences and in gene expression changes related to rescheduling a plant’s daily cycles that impact genes involved in traits such as when the leaf pores (stomata) open and heat stress response. Comparing the three CAM genomes, while they found convergent changes to either protein sequences or gene expression across genomes, they did not find the same changes in all three simultaneously.

Armed with the K. fedtschenkoi genome data, researchers can learn more about how CAM genes are regulated and functionally characterize CAM-related genes, such as by generating loss-of-function mutants. The information can help accelerate genetic improvement of plants to make them more tolerant of stresses such as drought and boost crop yields in non-CAM plants for fuel and food production on marginal lands.

BER Contact

Daniel Drell, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
daniel.drell@science.doe.gov

PI Contacts

Jeremy Schmutz
Plant Program Head
DOE Joint Genome Institute
jschmutz@hudsonalpha.com

Jerry Tuskan
Chief Executive Officer, Center for Bioenergy Innovation
ORNL Corporate Fellow
Oak Ridge National Laboratory
tuskanga@ornl.gov

Funding

This research was supported by the U.S. Department of Energy, Office of Science, Genomic Science Program under Award Number DE-SC0008834. Additional support was provided by the UK Biotechnology and Biological Sciences Research Council (grant no. BB/F009313/1) and the Laboratory Directed Research and Development (LDRD) Program (Project ID: 7758) of Oak Ridge National Laboratory. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract Number DE-AC05-00OR22725.

Publication

  • Yang X et al. The Kalanchoe genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat Commun. 2017 Dec 1. doi: 1038/s41467-017-01491-7.

Related Links

  • ORNL News Release: Genes found in drought-resistant plants could accelerate evolution of water-use efficient crops
  • Kalanchoe fedtschenkoi on Phytozome
  • CSP 2017 Proposal: Gene atlas for Kalanchoe laxiflora

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • CSP Plans
  • Featured Profiles

Related Content:

An Automated Tool for Assessing Virus Data Quality

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

A One-Stop Shop for Analyzing Algal Genomes

Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)

How Maize Makes An Antibiotic Cocktail

Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)

From Competition to Cooperation

The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)

A Grass Model to Help Improve Giant Miscanthus

Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)

In Hot Spring Microbial Mat, Viruses Ride “Piggyback”

Microbial mat under the microscope. Visible layers contain different microbial communities and minerals. The team characterized viruses in a subset of the mat layers. (John Spear)
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California