DOE Joint Genome Institute

  • COVID-19
  • About
  • Phones
  • Contacts
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Products
    • Science Highlights
    • Scientists
    Screencap of green algae video for PNAS paper
    Green Algae Reveal One mRNA Encodes Many Proteins
    A team of researchers has found numerous examples of polycistronic expression – in which two or more genes are encoded on a single molecule of mRNA – in two species of green algae.

    Read more

    Advances in Rapidly Engineering Non-model Bacteria
    CRAGE is a technique for chassis (or strain)-independent recombinase-assisted genome engineering, allowing scientists to conduct genome-wide screens and explore biosynthetic pathways. Now, CRAGE is being applied to other synthetic biology problems.

    Read more

    Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)
    How Maize Makes An Antibiotic Cocktail
    Zealexins are produced in every corn variety and protect maize by fending off fungal and microbial infections using surprisingly few enzymes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Poplar (Populus trichocarpa and P. deltoides) grow in the Advanced Plant Phenotyping Laboratory (APPL) at Oak Ridge National Laboratory in Tennessee. Poplar is an important biofuel feedstock, and Populus trichocarpa is the first tree species to have its genome sequenced — a feat accomplished by JGI. (Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy)
    Podcast: Xiaohan Yang on A Plantiful Future
    Building off plant genomics collaborations between the JGI and Oak Ridge National Laboratory, Xiaohan Yang envisions customizing plants for the benefit of human society.

    More:

    Expansin complex with cell wall in background. (Courtesy of Daniel Cosgrove)
    Synthesizing Microbial Expansins with Unusual Activities
    Expansin proteins from diverse microbes have potential uses in deconstructing lignocellulosic biomass for conversion to renewable biofuels, nanocellulosic fibers, and commodity biochemicals.

    Read more

    High oleic pennycress. (Courtesy of Ratan Chopra)
    Pennycress – A Solution for Global Food Security, Renewable Energy and Ecosystem Benefits
    Pennycress (Thlaspi arvense) is under development as a winter annual oilseed bioenergy crop. It could produce up to 3 billion gallons of seed oil annually while reducing soil erosion and fertilizer runoff.

    Read more

  • Data & Tools
    • IMG
    • Genome Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)
    An Automated Tool for Assessing Virus Data Quality
    CheckV can be broadly utilized by the research community to gauge virus data quality and will help researchers to follow best practices and guidelines for providing the minimum amount of information for an uncultivated virus genome.

    More

    Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)
    A One-Stop Shop for Analyzing Algal Genomes
    The PhycoCosm data portal is an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Podcast: A Primer on Genome Mining
    In Natural Prodcast: the basics of genome mining, and how JGI researchers conducted it in IMG/ABC on thousands of metagenome-derived genomes for a Nature Biotechnology paper.

    Read more

  • User Programs
    • Calls for User Proposals
    • Special Initiatives & Programs
    • User Support
    • Submit a Proposal
    screencap long reads webinar_ Metagenome Program
    Utilizing long-read sequencing for metagenomics and DNA modification detection webinar
    Watch the webinar on how the JGI employs single-molecule, long-read DNA sequences to aid with genome assembly and transcriptome analysis of microbial, fungal, and plant research projects.

    More

    SIP engagement webinar
    “SIP technologies at EMSL and JGI” Webinar
    The concerted stable isotope-related tools and resources of the JGI and the Environmental Molecular Sciences Laboratory (EMSL) may be requested by applying for the annual “Facilities Integrating Collaborations for User Science” (FICUS) call.

    Read more

    martin-adams-unsplash
    CSP Functional Genomics Call Ongoing
    The CSP Functional Genomics call helps users translate genomic information into biological function. Proposals submitted by July 31, 2021 will be part of the next review.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)
    A Team Effort Toward Targeted Crop Improvements
    A multi-institutional team has produced a high-quality reference sequence of the complex switchgrass genome. Building off this work, researchers at three DOE Bioenergy Research Centers have expanded the network of common gardens and are exploring improvements to switchgrass.

    More

    Artistic interpretation of how microbial genome sequences from the GEM catalog can help fill in gaps of knowledge about the microbes that play key roles in the Earth's microbiomes. (Rendered by Zosia Rostomian​, Berkeley Lab)
    Uncovering Novel Genomes from Earth’s Microbiomes
    A public repository of 52,515 microbial draft genomes generated from environmental samples around the world, expanding the known diversity of bacteria and archaea by 44%, is now available .

    More

    Green millet (Setaria viridis) plant collected in the wild. (Courtesy of the Kellogg lab)
    Shattering Expectations: Novel Seed Dispersal Gene Found in Green Millet
    In Nature Biotechnology, a very high quality reference Setaria viridis genome was sequenced, and for the first time in wild populations, a gene related to seed dispersal was identified.

    More

Our Science
Home › Science Highlights › A One-Stop Shop for Analyzing Algal Genomes

December 21, 2020

A One-Stop Shop for Analyzing Algal Genomes

The PhycoCosm data portal allows anyone to freely investigate the genes of more than 100 algae.

Phylogenetic tree of algal genomes, alongside some non-algal genomes for comparison, featured in PhycoCosm. Users can navigate to their organism(s) of interest from the tree view. (PhycoCosm)

Phylogenetic tree of algal genomes, alongside some non-algal genomes for comparison, featured in PhycoCosm. Users can navigate to their organism(s) of interest from the tree view. (PhycoCosm)

The Science

Interested in the genomes of algae? You now have one place where you can browse the genetic blueprints of these photosynthetic organisms. PhycoCosm is one of the largest data repositories of its kind, with an interactive browser that allows algal scientists and enthusiasts to look deep into more than 100 algal genomes, compare them, and visualize supporting experimental data.

The Impact

Algae are important organisms. They play key roles in global carbon cycling, are sources of natural products, and have potential as biofuel feedstocks. Understanding the genetic underpinnings responsible for these traits takes us closer to harnessing algae for bioenergy and the greater bioeconomy. By bringing together publicly available genomic data on algae into one place, PhycoCosm allows users to easily compile data that answers what genes are present in which organisms, when are they expressed, and what they do.

Summary

The name PhycoCosm stems from the Greek phykos, meaning seaweed. Seaweeds are algae, but many kinds of algae exist. During the course of evolution, algal organisms sprung up in almost all branches of eukaryotes (organisms with a nucleus). In part because of this evolutionary diversity, algal genomes can be incredibly complex and difficult to sequence and understand.

Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)

Unicellular algae in the Chlorella genus, magnified 1300x. (Andrei Savitsky)

A team of researchers led by Algal Genomics Program lead Igor Grigoriev and data scientist Alan Kuo at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab), have unveiled PhycoCosm in the Nucleic Acids Research journal. The genome portal reinforces the JGI’s new strategic focus on exploring algal biology, diversity, and ecology.

PhycoCosm has many components that make it useful for scientific inquiry: it shows a full phylogenetic tree of more than 100 sequenced algal genomes — many sequenced by the JGI — so researchers can easily explore the evolutionary and functional relationships among the different algae. Scientists can use PhycoCosm’s genome browser to see their favorite alga’s predicted genes and their organization, and analyze genes in the nucleus and organelles such as the chloroplast. In the cases where data are available, a user can also analyze gene expression from published experiments; study DNA methylation, which gives clues to how an organism may tune gene expression; and investigate corresponding proteins. PhycoCosm’s built-in connection to the DOE Systems Biology Knowledgebase (KBase) also allows researchers to study how metabolites flow through and transform in algae.

PhycoCosm joins other online data portals and tools created by JGI researchers, including the Integrated Microbial Genomes and Microbiomes (IMG/M) system for microbial and metagenome datasets, MycoCosm for comparative analysis of fungal genomes, and Phytozome for comparing plant genomes.

Kuo and Grigoriev encourage scientists to both utilize PhycoCosm’s data repository and contribute to it. And for those still needing their algae sequenced, Grigoriev and Kuo recommend they apply through the JGI’s Community Science Program.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Igor Grigoriev, Ph.D.
Algal Program Lead
DOE Joint Genome Institute
ivgrigoriev@lbl.gov

Funding:

U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]. S.C., B.K., and I.V.G. were supported in part by the Bioenergy Technology Office within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under Agreements NL0032266. Funding for open access charge: DOE [DE-AC02-05CH11231].

Publication:

  • Grigoriev et al. PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research. 2020 October. doi: 1093/nar/gkaa898

Related Links:

  • JGI’s Fungal & Algal Program
  • The JGI Strategic Plan, noting an algal thrust, is available here
  • Science Highlight: Tiny Green Algae Reveal Large Genomic Variation
  • Genome Insider Episode 5: Corals in Hot Water Get Help From Their Microbes
  • Genome Insider Episode 7: Decoding Yellowstone’s Microbial Mats
  • Genome Insider Episode 9: The Soil Blooms Green
  • Science Highlight: Making a Lichen Together

 

Byline: Alison F. Takemura

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Podcasts
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

An Automated Tool for Assessing Virus Data Quality

Artistic interpretation of CheckV assessing virus genome sequences from environmental samples. (Rendered by Zosia Rostomian​, Berkeley Lab)

How Maize Makes An Antibiotic Cocktail

Maize can produce a cocktail of antibiotics with a handful of enzymes. (Sam Fentress, CC BY-SA 2.0)

From Competition to Cooperation

The genome of the common fiber vase or Thelephora terrestris was among those used in the study. (Francis Martin)

A Grass Model to Help Improve Giant Miscanthus

Miscanthus grasses. (Roy Kaltschmidt/Berkeley Lab)

In Hot Spring Microbial Mat, Viruses Ride “Piggyback”

Microbial mat under the microscope. Visible layers contain different microbial communities and minerals. The team characterized viruses in a subset of the mat layers. (John Spear)

Effects of Polar Light Cycle on Microbial Food Web

Effects of Polar Light Cycle on Microbial Food Web
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Emergency Info
  • Accessibility / Section 508 Statement
  • RSS feed
  • Flickr
  • LinkedIn
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2021 The Regents of the University of California