DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › After the First Decade of Metagenomics–Adolescent Growth Spurt Anticipated

September 24, 2008

After the First Decade of Metagenomics–Adolescent Growth Spurt Anticipated

WALNUT CREEK, CA—Mostly hidden from the scrutiny of the naked eye, microbes have been said to run the world.  The challenge is how best to characterize them given that less than one percent of the estimated hundreds of millions of microbial species can be cultured in the laboratory. The answer is metagenomics—an increasingly popular approach for extracting the genomes of uncultured microorganisms and discerning their specific metabolic capabilities directly from environmental samples. Now, some ten year after the term was coined, metagenomics is going mainstream and already paying provocative dividends according to a “Q&A,” News and Views by the U.S. Department of Energy Joint Genome Institute (DOE JGI) microbial ecology program head Philip Hugenholtz and MIT researcher Gene Tyson, published in the 25 September edition of the journal Nature.

hypersaline_mat

A cross-section of a hypersaline Guerrero Negro microbial mat.

“By employing the techniques of metagenomics we can go beyond the identification of specific players to creating an inventory of the genes in that environment,” said Hugenholtz.  “We find that genes occurring more frequently in a particular community seem to confer attributes beneficial for maintenance of the function of that particular ecological niche.”

Hugenholtz and Tyson were part of the team assembled by University of California, Berkeley geochemist Jillian Banfield to investigate microbial communities associated with the acid mine drainage of Iron Mountain in far Northern California in 2004.  In the dank recesses of the mine, protected by moon suits from the highly acidic effluent, the researchers scooped up pink biofilm growing on the surface of acid mine drainage streams.  Extracting the nucleic acid from the sample and directing DOE JGI’s powerful DNA sequencing resource on them, the Banfield team was able to reconstruct the metabolic profiles of the organisms living under such inhospitable conditions—like putting many Humpty-Dumpties back together again.  Their findings, published in Nature 428, 37 – 43 (01 Feb 2004), showed that reconstructing the genomes of dominant populations from the environment was feasible and that the imprints of evolutionary selection could be discerned in these genomes.

Since this pioneering work, DOE JGI has gone on to characterize many other metagenomes with other newly selected targets in the sequencing queue at the Walnut Creek, Calif. Production Genomics Facility.  These range from the hindguts of termites, to plumb for microbes producing cellulose-degrading enzymes, likewise to microbial communities in the cow rumen, foregut of the Tammar Wallaby, and the crop of the Hoatzin, the Amazon stinkbird.  Beyond guts, the DOE JGI, through its Community Sequencing Program is enabling metagenomic explorations of Lake Washington near Seattle, Antarctica’s Lake Vostok, and the Great Salt Lake, in addition to the hypersaline mats at Guerrero Negro, Baja California. A video podcast of the Lake Vostok CSP project is featured on the DOE JGI site.  Nature features an audio podcast which includes an interview with Hugenholtz on their site.

Responding to the steadily increasing need to manage and interpret the terabases and terabytes of metagenomic data now bubbling up into the public domain, DOE JGI launched the Integrated Microbial Genomes with Microbiome Samples data management and analysis system. IMG/M provides tools for analyzing the functional capability of microbial communities based on the DNA sequence of the metagenome in question.

“Metagenomic tools are becoming more widely available and improving at a steady pace,” said Hugenholtz. “But, there are still computational and other bottlenecks to be addressed, such as the high percentage of uncharacterized genes emerging from metagenomic studies.”

In the Nature piece, Hugenholtz and Tyson go on to cite the emergence of next generation sequencing technologies that are already creating a deluge of data that has outstripped the computational power available to cope with it.

“Nevertheless, it’s not necessary to compare all the data to glean useful biological insights,” Hugenholtz said. “What we can capture will help steer the direction toward a relevant data subset to investigate. At least with metagenomics, we have the environmental genetic blueprints awaiting our interpretation. We are still far from capturing and characterizing the dazzling diversity of the microbial life on earth—but at least we have hit upon the gold standard for scratching the surface.”

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories — Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest — along with the Stanford Human Genome Center to advance genomics in support of the DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI’s Walnut Creek, CA, Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California