DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

News & Publications
Home › News Releases › How Scavenging Fungi Became a Plant’s Best Friend

November 25, 2013

How Scavenging Fungi Became a Plant’s Best Friend

Glomeromycota is an ancient lineage of fungi that has a symbiotic relationship with roots that goes back nearly 420 million years to the earliest plants. More than two thirds of the world’s plants depend on this soil-dwelling symbiotic fungus to survive, including critical agricultural crops such as wheat, cassava, and rice. The analysis of the Rhizophagus irregularis genome has revealed that this asexual fungus doesn’t shuffle its genes the way researchers expected. Moreover, rather than having lost much of its metabolic genes, as observed in many mutualistic organisms, it has expanded its range of cell-to-cell communication genes and phosphorus-capturing genes.

Image: Spores and hyphae (root-like extensions) of an AMF, R. irregularis, grown among carrot hairy roots. Photo by Guillaume Bécard (University of Toulouse).

Image: Spores and hyphae (root-like extensions) of an AMF, R. irregularis, grown among carrot hairy roots. Photo by Guillaume Bécard (University of Toulouse).

A team led by the French National Institute for Agricultural Research (INRA) and including researchers from the Department of Energy Joint Genome Institute (DOE JGI) reported the complete genome of R. irregularis (formerly Glomus intraradices) in a paper published online November 25 in the journal Proceedings of the National Academy of Sciences (PNAS http://bit.ly/PNAS-Glomus). The fungus is a member of the Glomeromycota family and frequently colonizes many plants important to agriculture and forestry. Glomeromycota, also called arbuscular mycorrhizal fungi (AMF), play a vital role in how phosphorus and carbon cycles through the atmosphere and land-based ecosystems, but exactly how it does this vital job is poorly understood.

“This is the first sequenced genome of arbuscular mycorrhizae, the type that is dominant on the planet,” said Igor Grigoriev, one of the senior authors on the paper and lead for the Fungal Genomics Program at the DOE JGI.

It was a long hard road to a sequenced arbuscular mycorrhizal fungus. In 2006, shortly after the DOE JGI sequenced the first tree genome, Populus trichocarpa, it became apparent that it takes a village (of other organisms) to raise a poplar tree. Researchers Jerry Tuskan of Oak Ridge National Laboratory and Francis Martin of INRA recommended that the assembly of Populus-associated fungi and bacteria be sequenced to inform research on perennial plant growth, ecosystem function and plant microbe interactions. This long passage is outlined in an earlier publication in New Phytologist. Rhizophagus irregularis, is the next in this linage to be released by the DOE JGI, it follows the ectomycorrhizal fungal symbiont Laccaria, the poplar rust pathogen Melampsora, and dozens of bacterial genomes.

A relic of fungal evolution, AMF diverged early on from other forms of fungus. They form dense clusters of branched structures — called arbuscules — in root cells, much like a tight, many-fingered handhold. The arbuscules are the main route of nutrient exchange between plants and fungi.  Unable to live on their own, AMF are entirely dependent on their plant hosts for the sugars they need for food. They have carefully established their relationship with host plants, keeping them alive while sapping nutrients from them.

But AMF are also adept at capturing phosphorus from the soil and making it available for their hosts. Phosphorus, a critical element for cellular function, is otherwise difficult to extract from the soil and is often the limiting factor for how quickly a plant grows.

Scientists theorize that the benefits these fungi provided enabled ancient plants to evolve during the Paleozoic era, about 250 to 500 million years ago. Over time, plants adapted their essentially rootless primordial form and developed deeper and stronger roots to take advantage of the nutrients that underground AMF fed them. In exchange, plants provided nutrients the fungi couldn’t obtain themselves.

Analysis of the R. irregularis genome also revealed several surprising details. The research team found that the genome is among the largest fungal genomes sequenced, weighing in at 153 million base pairs (Mb). For comparison, the button mushroom (Agaricus bisporus), also sequenced and published by the DOE JGI, has a genome of about 30 Mb. Through several generations, portions of R. irregularis’s genome were duplicated, invaded by repeated transposable elements, famously known as ‘jumping genes’. Unlike many other fungi, R. irregularis seems to lack mechanisms that can keep these transposable elements from running amok.

“Among the expanded portions of its genome, R. irregularis had several genes for phosphorus metabolism, which are probably responsible for its large appetite for phosphorus,” said Francis Martin, one of the senior authors on the paper and lead for the Cluster of Excellence, Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE) at the INRA (http://mycor.nancy.inra.fr/ARBRE/). “They also have an abundance of genes for communication between cells via signaling proteins, including small secreted effectors highly expressed during symbiosis. Plant roots send out a plethora of chemical signals and these genes probably help AMF interact with plants, picking up the signals plants pump out.”

Another surprise for the research team was in the genes that govern metabolism. “Obligate parasites often have broken metabolism, missing some genes in critical metabolic pathway which make them dependent on their host,” Grigoriev said. “We did not find such genes here.” R. irregularis has retained much of its metabolic machinery, unlike many other obligate parasitic organisms. It leads a double-life, extracting minerals from the soil while still living in harmony with its host plant.

Though it has nearly 30,000 protein-encoding genes, R. irregularis has also lost hundreds of genes as a result of its close association with plants. For example, it can’t make most of the toxins other plant-interacting fungi release, probably, the researchers speculate, to avoid setting off the host plant’s immune system. It has also cast off most of its genes for breaking down plant cell walls, a critical ability for free-living fungi that feed off dead organic matter in soils.

Teasing apart the complex relationship between soil fungi and plants is likely to have an impact on improving biofuel production from plant biomass. “Through analysis of this and other mycorrhizal genomes, we can help to better understand interactions and conditions critical for a sustainable growth of bioenergy plants, but also staple crops, a prerequisite to help feeding the world,” said Martin.

Learn more from researchers Grigoriev, Martin and other collaborators on the importance of fungal genomics in this video: http://bit.ly/JGI-Fungal-vid.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

JGI announces second round of 2023 New Investigator awardees

From left to right: [above] Emma Bell, Mallory Choudoir, Sneha Couvillion, Tobin Hammer, Christina Hazard, Rachel Mackelprang, Brook Moyers, Mei, Ran,; [below] Benjamin Peterson, Dacheng Ren, Allison Rober, Neal Scott, Chikae Tatsumi, Vojtech Tlaskal, Fernando Torralbo, Luis Felipe Valdez-Nuñez

A Collaboration to Improve Plant Genome Annotations Across Species

A tiled collage of square photos of different plants - soybeans, and sorghum, for example.

From Berkeley to Binghamton: Tracking Strawberry Evolution

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California