DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › A Gene that Influences Grain Yields in Grasses

April 28, 2017

A Gene that Influences Grain Yields in Grasses

Genetic screen identifies mutations that impact green foxtail panicle formation.

Field of Setaria viridis growing in western Nebraska. In the current issue of Nature Plants Huang and colleagues use Setaria viridis to identify the inflorescence mutant, sparse panicle 1. A mutation in the maize ortholog conditions a very similar panicle defect, demonstrating the utility of S. viridis for gene discovery in the panicoids. (Pu Huang)

Field of Setaria viridis growing in western Nebraska. In Nature Plants, researchers use S. viridis to identify the inflorescence mutant, sparse panicle 1. A mutation in the maize ortholog conditions a very similar panicle defect, demonstrating the utility of S. viridis for gene discovery in the panicoids. (Pu Huang)

The Science

Through deep sequencing of the model grass green foxtail (Setaria viridis), researchers pinpointed a gene critical for the development of flowers that give rise to the grain. Using this information, a homologous gene in maize was identified as playing a similar role highlighting the utility of S. viridis as a model crop.

The Impact

Maize, an important food and bioenergy crop, has been limited in the progress of gene discovery due to its large and complex genome. Recently, S. viridis has been proposed as a model crop for maize, but the grass is already a model system for the candidate bioenergy feedstocks switchgrass and Miscanthus. In a new study, researchers screening for mutants of the model grass green foxtail identified several mutations that disrupt the regular pattern of panicle development. The panicle is the spear-shaped flowering cluster at the tip of each branch necessary for reproduction.

Summary

Setaria species, among them green foxtail (S. viridis) and foxtail millet (S. italica), are related to several candidate bioenergy grasses including switchgrass and Miscanthus and serve as grass model systems to study grasses that photosynthetically fix carbon from CO2 through a water-conserving (C4) pathway. The genomes of both green foxtail and foxtail millet have been sequenced and annotated through the DOE JGI’s Community Science Program. A team led by Tom Brutnell at the Donald Danforth Plant Science Center and including researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, reported in Nature Plants, that they had identified genes that may play a role in flower development on the panicle of green foxtail.

The team identified four recessive mutants, tagged spp1 through spp4, that lead to panicles with reduced and uneven flower clusters. Focusing on the spp1 mutation, they performed deep sequencing to specifically locate the genes that cause the mutation, narrowing their search down to a 1-million base sequence. They ultimately identified the SvAUX1 gene in green foxtail as one critical for flower cluster development in green foxtail. Panicle development is critical for determining grain yield that is crucial to food crops as well as candidate crops for producing renewable and sustainable fuels.  A homologous gene in maize was identified as playing a similar role, illustrating the value of model systems in finding genes involved in important properties in potential bioenergy-relevant plants.

BER Contacts

Daniel Drell, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
daniel.drell@science.doe.gov

Pablo Rabinowicz, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Pablo.Rabinowicz@science.doe.gov

PI Contacts

Jeremy Schmutz
Plant Program Head
DOE Joint Genome Institute
jschmutz@hudsonalpha.com

Thomas Brutnell
Donald Danforth Plant Science Center
tbrutnell@danforthcenter.org

Funding

This work was conducted by the U.S. Department of Energy’s (DOE) Joint Genome Institute, a DOE Office of Science user facility (contract number DE-AC02-05CH11231). This work was also supported by a Department of Energy grant to T. Brutnell (DE-SC0008769), and a National Science Foundation grant to E.A. Kellogg (IOS-1413824).

Publications

P. Huang, H. Jiang, C. Zhu, K. Barry, J. Jenkins, L. Sandor, J. Schmutz, M.S. Box, E.A. Kellogg, and T.P. Brutnell. “Sparse panicle1 is required for inflorescence development in Setaria viridis and maize.” Nat. Plants. (2017) DOI: 10.1038/nplants.2017.54

Related Links

  • Green foxtail Community Science Program proposal
  • Foxtail millet Community Science Program proposal
  • Foxtail millet genome publication
  • DOE JGI Community Science Program
  • Setaria viridis on Phytozome
  • Setaria italica on Phytozome

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

You can move, but you can’t hide

Illustration of a magnifying glass identifying viruses and plasmids.

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California