DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

    Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)
    Expanding Metagenomics to Capture Viral Diversity
    Along with highlighting the viruses in a given sample, metagenomics shed light on another key aspect of viruses in the environment — their sheer genetic diversity.

    More

    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    CSP New Investigators FY23 R1
    JGI Announces First Round of 2023 New Investigator Awardees
    Twice each year we look for novel research projects aligned with DOE missions and from PIs who have not led any previously-accepted proposals through the CSP New Investigator call.

    More

    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › Feeding at the biofuel trough

February 14, 2014

Feeding at the biofuel trough

Researchers are using “experimental evolution” to develop bacteria that are more efficient at decomposing biomass.

The Science:

Clostridium phytofermentans is a soil-dwelling bacterium that helps decompose leaf litter. Researchers grew successive generations of bacteria on different woody material that make up plant cell walls (cellulose, cellobiose and xylan) and found that the bacteria adapted and became more efficient over generations. Genetic analysis found that mutations were in regions of DNA that coded for or regulated genes that were involved with carbohydrate (simple sugars) use or transport.

The Impact:

This is the first experiment to use an “experimental evolution” approach with a microbe that feeds on cellulose, following generations of bacteria as they adapt to different living environments. The findings suggest that it may be possible to find key genes and mutations that can be used in pinpointing genes that can be used to efficiently break down biomass feedstock, the raw material of biofuels.

The bacteria in this study, Clostridium phytofermentans, were isolated near the Quabbin Reservoir in Massachusetts. The bacteria live in the soil and help break down leaf litter on the forest floor. (Image by Philip Halling via Wikimedia Commons)

The bacteria in this study, Clostridium phytofermentans, were isolated near the Quabbin Reservoir in Massachusetts. The bacteria live in the soil and help break down leaf litter on the forest floor. (Image by Philip Halling via Wikimedia Commons)

Summary

Breaking down cellulose and other woody plant materials is one of the biggest challenges of producing efficient and sustainable biofuels. Biofuel developers depend on fungi and bacteria that are adept at breaking down these materials. Researchers from the University of Massachusetts, Amherst grew one of these bacteria, C. phytofermentans, in the lab on several different woody plant materials (xylan, cellobiose and cellulose) and studied the genes of subsequent generations as they adapted to their new nutrient-rich environment. They published their results in a paper published January 22, 2014 in the journal, PLOS ONE.

Cellulose and other woody plant materials are constructed from long chains of glucose units that can have anywhere from hundreds to thousands of glucose units. They’re a kind of carbohydrate, though humans have a hard time digesting cellulose and similar materials.

C. phytofermentans has more than 100 glycoside hydrolases, compounds for breaking down complex sugars and woody substances and about 50 different molecular transport system dedicated to moving them across cell membranes. So it’s an ideal organism to study genetic and molecular adaptations for carbohydrate metabolism. C. phytofermentans’s genome was sequenced as part of a DOE JGI Community Sequencing Project, which also partially supported this study.

After letting bacteria grow for many generations, the research team sequenced entire populations of adapted bacteria, which gave them a more complete picture of genetic adaptations. All the mutations the researchers identified were in the regions that coded or regulated a specific kind of transporter called CUT1, which are involved in transporting oligosaccharides, relatively small carbohydrate molecules. One series of mutations seemed to help the bacteria move glycoside hydrolases out of the cell faster. The adapted bacteria had several diverse mutations, hinting that there are many ways to efficiently feed off of woody materials – and many molecular pathways that can be tweaked to break down woody materials more efficiently.

The researchers suggest that further study of the mutations they identified is a good next step and that eventually, some of these mutations might someday be useful for breaking down biomass into useable renewable energy sources.

Contact

Jeffrey Blanchard
University of Massachusetts, Amherst
jeffb@bio.umass.edu

Publication

Mukherjee S, Thompson LK, Godin S, Schackwitz W, Lipzen A, et al. (2014) Population Level Analysis of Evolved Mutations Underlying Improvements in Plant Hemicellulose and Cellulose Fermentation byClostridium phytofermentans. PLoS ONE 9(1): e86731. doi:10.1371/journal.pone.0086731

Funding

Department of Energy, Office of Science
The Isenberg School of Management at the University of Massachusetts Amherst
The National Science Foundation
The Howard Hughes Medical Institute Award
Qteros Inc.

Related Links

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0086731

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.

Sequencing Sphagnum Leads to Discovery of Sex Chromosomes

A photo of two sphagnum species: S. divinum (red) and S. angustifolium (green)]

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

Soil virus offers insight into maintaining microorganisms

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California