DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

Our Science
Home › Science Highlights › Enhancing Microbial Pathways for Biofuel Production

January 20, 2015

Enhancing Microbial Pathways for Biofuel Production

DOE JGI, JBEI researchers collaborate on improving terpene production in E. coli.

Science:

Researchers from the DOE JGI and the Joint Bioenergy Institute identified genes in an E. coli microbial metabolism pathway that could improve the production of terpenes.

refueling a car with biodiesel. image from Flickr CC United Soybean Board

Funded by the DOE Office of Science, researchers at the DOE JGI and JBEI are developing ways to enhance the pathways in plants and microbes that produce precursors to potential biofuels. (Image by United Soybean Board via Flickr CC BY-2.0)

The Impact:

Terpenes are high-energy compounds produced in microbes and plants that could be used for producing biofuels. Enhancing terpene yields could lead to commercial-scale production of these biofuels.

Summary

Terpenes are hydrocarbons in plants such as conifers that act as a self-defense mechanism against pests, among other functions. Bioenergy researchers see terpenes are high-energy metabolites that could be used for producing biofuels from plant feedstocks. For example, terpene production in eucalyptus is of interest to the bioenergy researchers who were part of an international consortium of researchers, including scientists from U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility, which described the eucalyptus genome in Nature earlier this year. One side project resulting from work done there is being led by study co-author Jerry Tuskan of the DOE JGI as well as Oak Ridge National Laboratory (ORNL) and the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center (BRC). Tuskan’s team is working on oil gland formation in plants and expressed interest in determining the biochemical pathway of terpene production in eucalyptus leaves to develop a sustainable alternative to jet fuel.

In the January 2015 issue of Applied and Environmental Microbiology, DOE JGI researchers collaborated with another BRC, the Joint BioEnergy Institute (JBEI), to find ways of enhancing terpene yield in bacteria. In previous studies, JBEI researchers had reported that bisabolane, a biofuel resulting from the precursor terpene bisabolene, could serve as an alternative to diesel fuel. They wanted to find a way to improve terpene production in E. coli using the metabolic DXP pathway, which they consider more efficient in terms of final yield compared to the mevalonate pathway. To develop a novel route that would take C5 sugars (such as the xylose formed when hemicellulose is broken down) to terpenes, they used a directed-evolution strategy and deleted specific genes involved a key point in the pathway. The results led to their discovery of two novel routes: one that arose through spontaneous mutations; and, one found through overexpression of a selected candidate gene, for producing the terpene and candidate biofuel bisabolene.

The team also noted that applying the engineering process to the DXP pathways in plants and algae “could provide a more direct link from carbon fixation (Ru5P in the Calvin cycle) to the terpene pathway.”

Contact

Jay Keasling
Joint Bioenergy Institute
jdkeasling@lbl.gov

Funding

  • U.S. Department of Energy Office of Science
  • U.S. Department of Energy ARPA-E PETRO

Publication

Kirby J et al. Enhancing Terpene Yield from Sugars via Novel Routes to 1-Deoxy-d-Xylulose 5-Phosphate. Appl Environ Microbiol. 2015 Jan 1;81(1):130-8. doi: 10.1128/AEM.02920-14.

Related Links

  • http://jgi.doe.gov/just-food-koalas-eucalyptus-global-tree-fuel-fiber/
  • http://newscenter.lbl.gov/2011/09/27/jbei-scientists-identify-bisabolane-as-an-alternative-to-diesel-fuel/
  • http://www.esd.ornl.gov/PGG/researchpage.htm

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

New Research Finds Flagella in the Terrestrial Roots of Marine Bacteria

A photo of Great Boiling Spring in the forefront with mountains in the background.

For the Tiniest Archaea, A Genomic Switch of Friend or Foe

A grey microscopy photo taken at micron-scale. Microbes shown are small, round and slightly spiky in shape.

You Can Move, But You Can’t Hide

Illustration of a magnifying glass identifying viruses and plasmids.

iPHoP: A Matchmaker for Phages and their Hosts

iPHoP image (Simon Roux)

Supercharging SIP in the Fungal Hyphosphere

Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.

New Research Sheds Light on Diversity in the Deep Sea

A photo taken in the deep sea. Black clouds billow out of hydrothermal vents.
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California