DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Confirming Microbial Lineages Through Cultivation-Independent Means

June 25, 2015

Confirming Microbial Lineages Through Cultivation-Independent Means

Collaborative work culminates in evidence of a single candidate bacterial phylum.

Metagenome isolates from Great Boiling Spring were used to generate 'Atribacteria' (OP9) genomes. (Robert Dodsworth)

Metagenome isolates from Great Boiling Spring were used to generate ‘Atribacteria’ (OP9) genomes. (Robert Dodsworth)

The number of microbes found on Earth has been compared to the number of stars in the Milky Way. Yet the proportion of those microbes that can actually be grown under laboratory conditions is so small it would be akin to those stars that can be seen on a full-moon night in New York City—not many. To learn more about the uncultivated bacteria and archaea surrounding us, researchers are increasingly relying on culture-independent techniques such as single-cell genomics and metagenomics to fill in the still-unexplored branches on the Tree of Life. By carrying out such investigations, scientists hope not only to better understand the organization of microbial life on Earth but also to have more thorough surveys of potentially useful microbial genes, enzymes, pathways, and capabilities that could help DOE advance its energy and environmental missions.

In a recent study illuminating how novel microbial lineages are being uncovered through the use of such techniques, a team including researchers at the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility, offers compelling evidence that two groups of uncultivated bacteria actually belong to a single candidate phylum called ‘Atribacteria.’ These microorganisms are found globally distributed in “low energy” ecosystems where nutrients and oxygen are in short supply and shared metabolisms with other species—syntropy—is a viable survival strategy. The work was published online June 19, 2015 in The ISME Journal.

Shedding Light on Microbial Dark Matter Lineages

“This paper is the first comprehensive look into the genomic diversity within the ‘Atribacteria’, a candidate bacterial phylum that’s found in a wide variety of habitats such as geothermal springs, wastewater digesters and bioreactors, sub-seafloor environments, petroleum reservoirs, hypersaline microbial mats, and landfill leachates,” said Brian Hedlund of the University of Nevada, Las Vegas and a DOE JGI collaborator. “The work was only possible with close collaboration at JGI, particularly Tanja Woyke, who coordinated the Microbial Dark Matter project and helped to bring together several CSPs with significant ‘Atribacteria’ data.”

One candidate bacterial group (a phylum) called OP9 was first identified from samples collected at Yellowstone National Park’s Obsidian Pool. Similar microbial diversity studies from a marine sediment yielded a candidate bacterial phylum called JS1. Samples of these microbes were also found in various locations around the world as part of the DOE JGI’s efforts to shed light on what are considered “microbial dark matter,” and generate reference genomes of uncultivated bacteria and archaea in order to discover novel genes that could have applications in the fields of energy and environment, as well as to learn more about microbial diversity. Early efforts in this field led to a DOE JGI publication that incorporated collaborators from around the work and multiple Community Science Program projects.

Genomes of related 'Atribacteria' (OP9)  species were recovered from sites including Little Hot Creek. (Brian Hedlund, UNLV)

Genomes of related ‘Atribacteria’ (OP9) species were recovered from sites including Little Hot Creek. (Brian Hedlund, UNLV)

Building on this foundation, and on other succeeding studies, Hedlund’s group proposed that the OP9 bacteria belonged to a candidate phylum to be called ‘Atribacteria,’ while JS1 was thought to belong to a sister candidate bacterial phylum. In this more recent paper, however, researchers combined analysis of 16S ribosomal RNA genes and other highly conserved genes (i.e. phylogenomics) and reported that, despite significant phylogenetic distance and broad habitat range, the OP9 and JS1 lineages share some common features and are closely related enough to be lumped into the phylum ‘Atribacteria’.

First Comprehensive Genomic View of Phylum

“There is not a compelling argument for designation of OP9 and JS1 as separate phyla, and the most parsimonious analysis of the available data would suggest that the ‘Atribacteria’, (inclusive of OP9 and JS1, is a single candidate phylum within the Bacteria,” the team noted in their report.

Jeremy Dodsworth, a co-first author of the study who did his postdoctoral studies with the Hedlund lab and is now at California State University San Bernardino, noted that, “this current paper expands genomic coverage of the candidate phylum ‘Atribacteria’… presents new single-cell genomic data and uses it, along with previously published single-cell genomes, to identify “Atribacteria” genomic fragments within metagenomic datasets.”

Aside from providing the research community with a “first comprehensive view of this group of microbes and prediction of their shared structural and physiological traits,” he added, “we also hope that it will give us clues as to how to grow members of the ‘Atribacteria’ in the laboratory and study them in isolation.” Knowing “what genes are out there” offers considerable promise for better tools for both growing difficult-to-grow microbes, as well as bioproducts relevant to energy and environmental challenges faced by DOE.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California