DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

Our Science
Home › Science Highlights › The Power of One, Amplified

April 11, 2022

The Power of One, Amplified

A preview of how large-scale single cell genomics complements metagenomics studies.

One of the pools at Dewar Creek hot springs in British Columbia, Canada. (Allyson Brady)

One of the pools at Dewar Creek hot springs in British Columbia, Canada. (Allyson Brady)

The Science

Researchers demonstrated the value of conducting large-scale single cell genomics by collecting nearly 500 single cells from a single low diversity hot spring sediment sample. Their work showed that single cell genomics can add significant value to the other commonly used culture-independent sequencing approaches including amplicon and metagenomic sequencing. For example, they showed that the composition of the community was similar across sequencing approaches, that species specific sets of single cells harbored mobile genetic elements that were missed within paired metagenome assembled genomes (MAGs), and that dominant populations varied with respect to the amount of within species recombination, indicating variation in gene flow between the analyzed community members.

The Impact

Though microbes help regulate the planet’s nutrient cycles and are potentially of use in fields ranging from agriculture to biotechnology and medicine, the vast majority in, on, and around the planet remain unknown. In recent years, advances in sequencing technologies and bioinformatic tools have helped decode the genomes of tens of thousands of previously unknown and uncultivated microbes through metagenomics. Such techniques take advantage of bioinformatics tools for  extracting snippets of microbial genomes directly from environmental sequence data, by piecing each genome together from large mixtures of genomic sequences. A complementary approach to this is single cell genomics, where cells from environmental samples are first separated, and their genomes then amplified and sequenced individually, offering scientists the opportunity to apply population genomics approaches to closely related cells plucked directly from the environment.

Summary

Dewar Creek is a remote hot spring, deep within the British Columbia backcountry (Purcell Wilderness Conservancy Provincial Park of British Columbia, BC Parks). In these springs, temperatures can reach as high as 80C (~ 190F), yet microbes thrive here. The communities in this extreme environment are often less diverse than those within more moderate ecosystems. A few years ago, a candidate bacterial lineage was identified from microbial and metagenome sequence data sets generated from a handful of hot springs, including Dewar Creek.

Continuing explorations into this unique environment, researchers from the University of Calgary and the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab), employed single-cell sequencing to assess the diversity within and between microbial populations. The work appeared in The ISME Journal.

Members of the Dunfield lab collected samples from this hot spring. A single sample was then used to produce a paired amplicon dataset (a.k.a. 16S rRNA gene sequencing), a shotgun metagenome, and a single cell dataset of nearly 500 single cell genomes. The single cell portion of this work was performed by Danielle Goudeau and Rex Malmstrom of the JGI’s Microscale Applications group. Cells were randomly sorted, whole genome amplified, then sequenced and assembled. Robert Bowers, a JGI scientist within the Microbial Program, led the genomic analyses to compare the resulting datasets, emphasizing the utility of single cell sequencing to assess the variation within natural microbial populations.

Each of the three sequencing approaches produced a generally similar community profile. But each approach demonstrates its full value at different scales. Amplicon sequencing is commonly used to assess fluctuations in microbial diversity across thousands of samples. Metagenomics is currently being applied across tens to hundreds of samples, while single cell approaches have been typically used as a complement to isolate sequencing, i.e. when the targeted cells cannot be cultivated in the lab.

What makes this particular study unique is the application of single cell genomics to a whole community. Given the low microbial diversity of the sampled hot spring, a dataset of nearly 500 single cells covered the diversity of most taxa within the sample. Furthermore, the three most abundant lineages were represented by enough single cell genomes to facilitate an analysis of within and between population heterogeneity by comparing the ATGCs of the genomes from each single cell. The team showed that while the broad nucleotide-level diversity was similar across the dominant lineages, each microbial group displayed vastly different recombination profiles. This is akin to the structure of social media networks where one social media group may have a relatively constrained set of friends, while another might exhibit few limitations to interactions and new connections, thus sharing more ideas, similar to the sharing of genes within a highly recombining microbial population. This work showcases the utility of single cell sequencing, as monitoring population-level heterogeneity of uncultivated microbes will provide researchers the ability to capture the fine-scale variation within populations that is a precursor to strain-level diversification and microbial speciation.

Contacts:

BER Contact
Ramana Madupu, Ph.D.
Program Manager
Biological Systems Sciences Division
Office of Biological and Environmental Research
Office of Science
US Department of Energy
Ramana.Madupu@science.doe.gov

PI Contact
Tanja Woyke
DOE Joint Genome Institute
twoyke@lbl.gov

Funding:

The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. This work was supported in part by a Natural Sciences and Energy Research Council of Canada (NSERC) Discovery Grant to PFD (2019-06265). This work was also sponsored by NSF grants DEB-1441717, OCE-1335810, and OIA-1826734 to RS.

Publication:

  • Bowers RM et al. Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. ISME J. 2021 Dec 30. doi: 10.1038/s41396-021-01178-4.

Related Links:

  • JGI Science Highlight: Uncovering Hidden Microbial Lineages from Hot Springs
  • Emiley Eloe-Fadrosh at the 2015 JGI Annual Meeting: http://bit.ly/JGI15UMKryptonia
  • JGI Community Science Program
  • JGI Single Cells Group
  • JGI Release: Defining Standards for Genomes from Uncultivated Microorganisms

 

 

Byline: Massie S. Ballon

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases, Science Highlights

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California