DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

All JGI Features
Home › Items tagged with: bioenergy

Content Tagged "bioenergy"

Page 5 of 21« First«...34567...1020...»Last »

February 18, 2012

Dietary impacts on hoatzin crop microbial communities

Many DOE JGI metagenomic projects focus on microbial communities in the guts of the cow, termite and even the desert locust, all known to break down plant biomass for energy. In studying these and other gut microbial communities, researchers hope to identify and isolate genes involved in plant biomass degradation, and apply them to biofuel… [Read More]

January 13, 2012

A toolkit for T. reesei

The availability of an organism’s genome sequence is useful for improving downstream applications such as large-scale biofuel production, but it is only the first step on this path. In the case of the fungus Trichoderma reesei, whose genome sequence was published by the DOE JGI in 2008, the cellulases in T. reesei have multiple industrial… [Read More]

January 13, 2012

1000 Fungal Genomes project in The Daily Barometer

Joey Spatafora, an associate professor at Oregon State University, is leading an international project to sequence the genomes of a thousand fungi, a project aptly named 1000 fungal genomes.    “It’s a really, really exciting time in fungal biology because we can sequence fungal genomes more easily than we could ten years ago,” Spatafora said. The Daily Barometer [Read More]

January 7, 2012

Cotton project in the Delta Farm Press

An international consortium, led by Professor Andrew Paterson of the University of Georgia, has made publicly available the first ‘gold-standard’ genome sequence for cotton. Cotton was among the first plants studied at the molecular level, and the sequence obtained by Paterson and his team is the culmination of a 20-plus year effort in the analysis… [Read More]

December 2, 2011

Engineering bacteria to produce biodiesel

Biodiesel production typically starts with oil-rich energy crops such as soybean, palm or rapeseed, which are harvested and then converted into fatty acids for use as fuel. The cost of expanding oilseed crop production is a limiting factor in allowing biodiesel to compete with fossil fuel sources. One alternative to using oilseed crops that many… [Read More]

November 28, 2011

Spider mite genome project in CBC News

“They can change the repertoire [of genes] that they’re using in order to be able to feed on hosts that they would not be adapted to,” said Miodrag Grbic, a University of Western Ontario biologist, who led an international project to sequence the spider mite’s genome. The results were published this week in the journal… [Read More]

November 23, 2011

Mite genome to help protect bioenergy feedstocks

The tiny two-spotted spider mite extracts nutrients from the leaves of 1,100 plant species including bioenergy feedstock crops. The global cost of chemically controlling this pest is estimated to be around $1 billion annually. Given its potential to significantly reduce crop yields and inhibit biofuel production, the spider mite Tetranychusurticaewas selected for the 2007 DOE… [Read More]

November 23, 2011

Spider mite genome project in GenomeWeb

The spider mite, named for its ability to spin webs, belongs to an arthropod sub-group comprised of so-called chelicerates and is capable of consuming more than 1,100 plant species. This trait, coupled with its ability to develop resistance to most commonly used pesticides, have made it a potent pest, known for damaging ornamental plants and… [Read More]

November 16, 2011

DOE JGI research featured in io9

Last month I was lucky enough to visit one of the biggest genomics labs in the world. At the Joint Genome Institute (JGI) in Walnut Creek, CA, huge rooms full of genome sequencing machines work 24/7 to crunch the codes that create life. And the research here, funded by the US Department of Energy, has… [Read More]

November 10, 2011

Danforth Center highlights plant projects for CSP 2012

The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) has selected two projects from a highly competitive pool of applications, submitted by Danforth Plant Science Center Principal Investigators, Dr. Thomas Brutnell and Dr. Todd Mockler as part of its 2012 Community Sequencing Program (CSP). Read more at the Danforth Center News site. [Read More]
Page 5 of 21« First«...34567...1020...»Last »

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California