Published in:
mSystems 6(4) ( 2021)
Author(s):
DOI:
10.1128/mSystems.00443-21
Abstract:
Yarrowia lipolytica is an oleaginous yeast exhibiting robust phenotypes beneficial for industrial biotechnology. The phenotypic diversity found within the undomesticated Y. lipolytica clade from various origins illuminates desirable phenotypic traits not found in the conventional laboratory strain CBS7504 (or W29), which include xylose utilization, lipid accumulation, and growth on undetoxified biomass hydrolysates. Currently, the related phenotypes of lipid accumulation and degradation when metabolizing nonpreferred sugars (e.g., xylose) associated with biomass hydrolysates are poorly understood, making it difficult to control and engineer in Y. lipolytica. To fill this knowledge gap, we analyzed the genetic diversity of five undomesticated Y. lipolytica strains and identified singleton genes and genes exclusively shared by strains exhibiting desirable phenotypes. Strain characterizations from controlled bioreactor cultures revealed that the undomesticated strain YB420 used xylose to support cell growth and maintained high lipid levels, while the conventional strain CBS7504 degraded cell biomass and lipids when xylose was the sole remaining carbon source. From proteomic analysis, we identified carbohydrate transporters, xylose metabolic enzymes, and pentose phosphate pathway proteins stimulated during the xylose uptake stage for both strains. Furthermore, we distinguished proteins involved in lipid metabolism (e.g., lipase, NADPH generation, lipid regulators, and