Published in:
Mol Microbiol (Mar 2017)
Author(s):
DOI:
10.1111/mmi.13592
Abstract:
Most Ensifer strains are comparatively acid sensitive, compromising their persistence in low pH soils. In the acid-tolerant strain E. medicae WSM419, the acid-activated expression of lpiA is essential for enhancing survival in lethal acidic conditions. Here we characterise a multi-step phosphorelay signal transduction pathway consisting of TcsA, TcrA, FsrR, RpoN and its cognate enhancer binding protein EbpA, which is required for the induction of lpiA and the downstream acvB gene. The fsrR, tcrA, tcsA, and rpoN genes were constitutively expressed, whereas lpiA and acvB were strongly acid-induced. RACE mapping revealed that lpiA/acvB were co-transcribed as an operon from an RpoN promoter. In most Ensifer species, lpiA/acvB is located on the chromosome and the sequence upstream of lpiA lacks an RpoN binding site. Nearly all E. meliloti strains completely lack ebpA, tcrA, tcsA and fsrR regulatory loci. In contrast, E. medicae strains have lpiA/acvB and ebpA/tcrA/tcsA/fsrR co-located on the pSymA megaplasmid, with lpiA/acvB expression coupled to an RpoN promoter. Here we provide a model for the expression of lpiA/acvB in E. medicae. This unique acid-activated regulatory system provides insights into an evolutionary process which may assist the adaptation of Ensifer medicae to acidic environmental niches. This article is protected by copyright. All rights reserved.