DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › JGI Announces 2023 Community Science Program Awardees

September 29, 2022

JGI Announces 2023 Community Science Program Awardees

Quaking aspen trees in autumn colors near Gothic, Colorado. (Courtesy of Benjamin Blonder)

Quaking aspen trees in autumn colors near Gothic, Colorado. (Courtesy of Benjamin Blonder)

Congratulations to the proposers of the 19 proposals selected for the 2023 Community Science Program call of the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory (Berkeley Lab).

“We’re very excited to start working with this years’ crop of CSP recipients, over half of which are first-time PIs on a JGI proposal,” said Tanja Woyke, JGI’s deputy of User Programs. “The proposed research by these PIs will address a broad diversity of important scientific questions relevant to the DOE mission, and we look forward to facilitating their success. “

The CSP Annual Call is focused on large-scale genomic science projects relevant to the DOE’s Office of Biological and Environmental Research (BER) missions in: sustainable biofuel and bioproducts production, global carbon and nutrient cycling, and biogeochemistry. You can learn more about this year’s recipients on our Twitter. 

Samples were collected from across a permafrost age gradient from the Fox permafrost tunnel near Fairbanks, Alaska. (Courtesy of Mary-Cathrine Leewis)

Samples were collected from across a permafrost age gradient from the Fox permafrost tunnel near Fairbanks, Alaska. (Courtesy of Mary-Cathrine Leewis)

This year’s annual CSP call had five areas of emphasis: genes to function, plant and algal functional genomics, inter-organismal interactions, understanding natural communities important for carbon storage, nutrient cycling, and climate change; and biofuels, biomaterials and bioproducts. Learn more about the program, including how to apply, here on our website.

 

The approved proposals start October 1, 2022, See the full list of awardees below:

Approved FY2023 Proposals

Name Affiliation Title
Blonder, Benjamin University of California at Berkeley Identifying the genetic basis of complex phenotypes and climate adaptation in quaking aspen (Populus tremuloides)
Chen, Jay Oak Ridge National Laboratory Leveraging Natural Variations to Uncover Regulatory Mechanisms Governing Differential Biosynthesis of Terpenes in Populus
DeAngelis, Kristen University of Massachusetts Amherst Soil microbial stress-biogeochemistry metabolism adapts under climate change across seasons
Dinneny, Jose Stanford University Understanding the mechanisms of metabolic exchange in the rhizosphere
Humphries, Jacqueline Amyris, Inc. A high-throughput, multi-omics approach to identifying new gene expression modules for industrial bioproduction in alternative fermentation hosts
Krasovec, Marc National Center for Scientific Research (CNRS) Phytoplankton spontaneous mutation rate
Leewis, Mary-Cathrine Agriculture and Agri-Food Canada Life in Ancient Permafrost: using an isotope and ‘omics approach to determine how microorganisms survive and metabolize in subzero temperatures across geologic time
Lofgren, Lotus Duke University Functional roles of secondary metabolism in ectomycorrhizal fungi
Majumder, Erica University of Wisconsin-Madison Characterization of plastic deconstruction metabolic pathways in microbial communities derived from enrichments of plastic debris in soil and landfill samples
Nagy, Laszlo Biological Research Centre of the Hungarian Academy of Sciences A genome-wide view of the evolution of the most widely used lignocellulose-degrading Basidiomycota
Nunn, Brook University of Washington Investigating the interactions of a phytoplankton community and its microbiome on a 4-hour timescale to reveal emerging and predictive properties across an algal bloom and bust cycle
Ohm, Robin Utrecht University Functional genomics of the lignocellulose-degrading fungus Schizophyllum commune: regulatory networks, sustainable fungal materials and fungal defense
Pawlowska, Teresa Cornell University Unraveling the mechanisms behind the role of endosymbiotic bacteria in community structuring and evolution of Mucoromycota fungi
Saleska, Scott University of Arizona Primary succession of plant and microbial life: untangling inter-organismal interactions on a model early-successional landscape
Wakao, Setsuko Lawrence Berkeley National Laboratory Evolutionary genomics of biomineralizing stramenopiles with impacts on global carbon cycling and biogeochemistry
Weimer, Bart University of California, Davis The role of carbohydrate and nitrogen fixation for sustainable plant microbiome interactions
Wilbanks, Elizabeth University of California Santa Barbara The role of population distributed immunity in the eco-evolutionary dynamics of bacteria and phage
Wilhelm, Steven University of Tennessee, Knoxville Direct resolution of virus-host interactions using bulk single-celled labeling and application to deep community metatranscriptomics
Wolfe, Marnin Auburn University Clover Genomics for Sustainable Bioenergy Mixtures

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

JGI at 25: Expanding Metagenomics to Capture Viral Diversity

Artist rendering of genome standards being applied to deciphering the extensive diversity of viruses. (Illustration by Leah Pantea)

A New Actinobacterial Chapter in the Genomic Encyclopedia of Bacteria and Archaea

Open book with circular representations of microbial genomes above, all against a green background
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California