Cavicchioli and his lab compared the traits of S. alaskensis‘ genome against the genome of Photobacterium angustum, a bacterium collected and sequenced from the warmer, nutrient-rich waters off Sydney, Australia. They then tested the model developed based on these two genomes to successfully predict whether several dozen bacterial samples were those that grow in nutrient-rich environments like P. angustum or under nutrient-poor conditions, like S. alaskensis.
The researchers’ findings also supported a long-held theory that though more microbial genome projects involve bacteria adapted to more nutrient-rich environments, in part because they are easier to cultivate, bacteria like S. alaskensis are more representative of microorganisms that are abundant and ecologically significant in the biosphere. DOE JGI Genome Biology Program head and study co-author Nikos Kyrpides said the finding supports the need to develop better techniques to isolate such microorganisms from nutrient-poor environments and sequence their genomes in order to better reflect the microbial biodiversity.
More on Huliq News.