DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Engineering a More Efficient System for Harnessing Carbon Dioxide

November 17, 2016

Engineering a More Efficient System for Harnessing Carbon Dioxide

A MPI video featuring study senior author Tobias Erb discussing this project may be viewed at http://bit.ly/ErbCETCH.

A MPI video featuring study senior author Tobias Erb discussing this project may be viewed at http://bit.ly/ErbCETCH.

Despite the vast diversity of organisms on the planet that express enzymes for the conversion of carbon dioxide into such organic compounds as sugars – as plants do through photosynthesis – the efforts to harness these capabilities to transform CO2 into high-value products such as biofuel and renewable chemicals have met with limited success. While increasing concentration of CO2 in the atmosphere poses a challenge, researchers also see it as an opportunity.

Now a team from the Max-Planck-Institute (MPI) for Terrestrial Microbiology in Marburg, Germany, by tapping the DNA synthesis expertise of the U.S. Department of Energy Joint Genome Institute (DOE JGI) has reverse engineered a biosynthetic pathway for more effective carbon fixation. This novel pathway is based on a new CO2-fixing enzyme that is nearly 20 times faster than the most prevalent enzyme in nature responsible for capturing CO2 in plants by using sunlight as energy. The study was published in the November 18, 2016 issue of the journal Science.

“We had seen how efforts to directly assemble synthetic pathways for CO2-fixation in a living organism did not succeed so far,” said Tobias Erb of MPI, who led the study. “So we took a radically different, reductionist approach by assembling synthetic principal components in a bottom-up fashion in a test tube.”
The team started with several theoretical CO2-fixation routes that could result in continuous carbon cycling. But they didn’t stop there. “We did not restrict our design efforts to known enzymes, but considered all reactions that seemed biochemically feasible,” Erb said.

A diagram of the carbon cycle, showing how carbon moves around the planet.

A diagram of the carbon cycle, showing how carbon moves around the planet.

Unlike DNA sequencing, where the language of life is read from the genome of an organism, DNA synthesis entails first the identification of a particular genetic element – such as an enzyme for fixing carbon from the atmosphere ­– and writing and expressing that code in a new system.

In the end, they sourced, through sequencing and synthesis, 17 different enzymes from 9 different organisms across the three kingdoms of life and orchestrated these parts to achieve a proof of principle CO2-fixation pathway performance that exceeds that which can be found in nature. Erb calls this the “CETCH cycle” for crotonyl-CoA/ethylmalonyl-12 CoA/hydroxybutyryl-CoA. Because it ‘cetches’ CO2 more efficiently from the atmosphere.

By deploying the concept of metabolic “retrosynthesis,” dismantling the reaction step by step all the way back to smaller precursors, the team juggled the thermodynamic conditions and came up with a strategy that yielded more promising results that competed favorably with natural-occurring metabolic pathways. Then they plumbed the depths of the public databases for enzymes that would support their model and selected several dozen to try out.

“We first reconstituted its central CO2-fixation reaction sequence stepwise, providing the ingredients to catalyze all the desired reactions. Then, by following the flux of CO2 we discovered which particular key reaction was rate-limiting.”

This turned out to be methylsuccinyl-CoA dehydrogenase (Mcd), part of a family of enzymes involved in respiration ­– the metabolic reaction in the cells of organisms to convert nutrients like carbon into units of energy.

Study first author Thomas Schwander (left) in discussion with Tobias Erb. (Courtesy of Tobias Erb)

Study first author Thomas Schwander (left) in discussion with Tobias Erb. (Courtesy of Tobias Erb)

“To overcome this limitation, we engineered the Mcd to use oxygen as an electron acceptor, to amp up the function, but this was not quite enough,” said Erb. “We had to replace the original pathway design with alternative reaction sequences, used further enzyme engineering to minimize side reactions of promiscuous enzymes, and introduced proofreading enzymes to correct for the formation of dead-end metabolites,” Erb said.

In support of the MPI team’s efforts, the DOE JGI synthesized hundreds of Enoyl-CoA Carboxylase/Reductase (ECR) enzyme variants through its Community Science Program. This enabled the MPI team to zero in on the ECR with the highest CO2-fixation activity to successfully build a more efficient artificial CO2 fixation pathway in a test tube.

“ECRs are supercharged enzymes that are capable of fixing CO2 at the rate of nearly 20 times faster than the most widely prevalent CO2-fixing enzyme in nature, RuBisCo, which carries out the heavy lifting involved in photosynthesis,” Erb said.

This chemical process harnesses sunlight to turn carbon dioxide into sugars that cells can use as energy along with other natural processes on the planet and accounts for the transformation of some 350 billion tons of CO2 annually.

DOE JGI DNA Synthesis Science Head Yasuo Yoshikuni

DOE JGI Synthesis Science Head Yasuo Yoshikuni

Seventy years ago this phenomenon captured the imagination of early Berkeley Lab researcher Melvin Calvin who, along with Andrew Benson and James Bassham, described, in plants, algae and microorganisms, the cycle that now bears their names, and for which Calvin was awarded the Nobel Prize in 1961.

This generation of researchers are concerned about how to capture excess carbon dioxide, remove it from the atmosphere and render it into energy and natural products for the economy.

“Now Berkeley Lab through the DOE Joint Genome Institute, has been a major contributor to our understanding of the vast genetic diversity of microorganisms and their roles in the environment, particularly in carbon cycling,” said Yasuo Yoshikuni, the head of the DNA Synthesis Science group at the DOE JGI. “By sequencing underexplored phyla from ecologically important niches, we have homed in on the genes and pathways that we now are able to synthesize in the lab to unravel novel strategies that nature uses for carbon metabolism. Identifying these genes encoding CO2 -fixing enzymes and their biological function, is one of the important missing pieces in the climate puzzle.”

Emboldened by the successful reconstitution of a synthetic enzymatic network in a test tube for the conversion of CO2 into organic products that is superior to chemical processes and competes with favorably with those in nature, Erb said this opens the door for other future applications.

“These could include the introduction of synthetic CO2-fixation cycles into organisms to bolster natural photosynthesis, or say, in combination with photovoltaics, lead the way to artificial photosynthesis, this might at the end jumpstart the design of self-sustaining, completely synthetic carbon metabolism in bacterial and algal systems.”

Yoshikuni looks to a future where DNA sequencing and biological functions further converge leveraging DNA synthesis. “Through DOE JGI’s high-throughput sequencing capabilities coupled with the rapidly decreasing price of DNA synthesis, we continue to enable our user community in bringing to light the physiological potential of microorganisms and microbial communities. In the longer term, we hope to expect to see these test-tube results yield a new generation of real bioproducts delivered to address critical energy and environmental challenges.”

The broader significance of this work is to dramatically illustrate the increased role of “engineering thinking” in biotechnology, as the accelerated characterization of the biological “parts list” emerging from high throughput genome sequencing furnishes greater opportunities to reconstruct by design capacities in living organisms that address DOE mission needs in bioenergy and environment.

This research was supported by the European Research Council, the Swiss National Science Foundation, ETH Zurich and the Max-Planck Society. DOE JGI is a DOE Office of Science User Facility.

The DOE Joint Genome Institute, through its Community Science Program, offers access to DNA synthesis resources. The next deadline falls on January 30, 2017. For more information, see: http://jgi.doe.gov/user-program-info/community-science-program/how-to-propose-a-csp-project/synthetic-biology/.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California