DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Consortium to Sequence Fugu Fish: Potential Boon for Gene Hunters

October 26, 2000

Consortium to Sequence Fugu Fish: Potential Boon for Gene Hunters

by Lynn Yarris

BERKELEY, CA — Scientists searching the human genome data for genes and the DNA sequences that control their activity will soon have a valuable new resource, courtesy of the Japanese delicacy known as fugu (Fugu rubripes), the puffer fish. An international consortium, led by researchers at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE), has announced a collaborative agreement to sequence the Fugu genome.

Fugu rubripes

The fugu or puffer fish, Fugu rubripes

Although the fugu genome contains essentially the same genes and regulatory sequences as the human genome, it carries those genes and regulatory sequences in approximately 400 million bases as compared to the 3 billion bases that make up human DNA. With far less so-called “junk” DNA to sort through, finding genes and controlling sequences in the fugu genome should be a much easier task. The information can then be used to help identify these same elements in the human genome.

Said Energy Secretary Bill Richardson, “This genetic information from a distantly related vertebrate will help us read the book of human life with new understanding and knowledge. Given the major contributions already made to the human genome project by the Energy Department’s Joint Genome Institute and their tremendous capability to decode DNA, this new effort is a logical and exciting next step in the project.”

DOE began the Human Genome Project in 1986 out of its Congressional mandate to study the genetic and health effects of radiation and chemical by-products of energy production. Said Trevor Hawkins, deputy director of the JGI, “This project will represent our single largest genome sequencing project to date and be the centerpiece of our new Genome Portal.”

Based in Walnut Creek, California, the JGI is one of the largest publicly funded genome sequencing centers in the world. The institute is itself a consortium initially formed by three DOE national laboratories, Lawrence Berkeley, Lawrence Livermore, and Los Alamos. Joining the JGI in this collaborative effort to sequence the Fugu genome are the Institute for Molecular and Cell Biology (IMCB), which is in Singapore and is led by Chris Tan; the UK Human Genome Mapping Resource Centre, which is in Cambridge and whose role in the sequencing of the Fugu genome will be led by Greg Elgar; The Molecular Sciences Institute, which is located in Berkeley and is led by Sydney Brenner who is also a visiting investigator at the IMCB; and the Institute for Systems Biology, which is located in Seattle and led by Lee Hood.

Evolution has conserved many of the DNA sequences used in genes to code for proteins or in the elements that regulate gene expression. This makes comparisons of genome sequences between species an effective and efficient means of finding new genes. Currently, the favorite genome models for gene hunters include those of the mouse, fruit fly, yeast, and nematode. Fugu is a wildly popular food in Japan even though it can be lethally poisonous if prepared improperly. The genome of this fish, with its 8-fold compactness compared to the human genome, should make it a very cost-effective model.

Explains Daniel Rokhsar, JGI’s associate director for computational genomics, “Within each taxonomic grouping, there can be wide variations in genome size that are not necessarily related to the complexity of the organism. These variations appear to be due to differing amounts of ‘junk’ or ‘selfish’ DNA, often dominated by the remains of ancient viral-like genomic infections that left hundreds of thousands of repetitive elements littered throughout the genome. The Fugu genome seems to have avoided these events and sequencing. It will therefore allow us to obtain a complete vertebrate genome extremely rapidly.”

Under the terms of the consortium’s agreement, the JGI will be responsible for both the production of draft sequences as well the computational aspects of the project. The fugu genome will be sequenced following the same “shotgun strategy” used so successfully by JGI researchers to complete the draft sequences of human chromosomes 5, 16 and 19. To speed the process even faster for the Fugu genome, researchers will use customized software now being developed at the JGI under the direction of Rokhsar. JGI scientists anticipate having more than 95 percent of the Fugu genome sequence available in an accessible database by March 2001.

The other members of the consortium will be responsible for the finishing phase of the project as well as contributing to the computational analysis of the genomic data. The long-term goal of this consortium is to generate complete sequence coverage of the Fugu genome and assemble it into a finished form for comparative genomic analysis.

Nobel laureate James Watson, co-discoverer of DNA’s double helix structure, has endorsed this project. “The fugu fish sequence, in combination with the draft mouse genome, to be available in early 2001, will greatly add to the comparative sequence studies that are now required to isolate coding and non-coding conserved elements within the human genome.”

Said Sydney Brenner, whose pioneering studies of fugu biology with Greg Elgar and his colleagues helped show that the organization of fugu genes parallels that of human genes, “I am delighted that DOE has decided to sequence fugu. The data will greatly enhance the identification of gene promoter regions and lead to a much better understanding of the human genome.”

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Busting the Unbreakable Lignin

Pictured is a micrograph of Neocallimastix californiae.

Tracing the Evolution of Shiitake Mushrooms

A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.

JGI announces final round of 2022 Functional Genomics awardees

Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI at 25: Mapping Switchgrass Traits with Common Gardens

Aerial photo of the switchgrass diversity panel late in the 2020 season at the Kellogg Biological Station in Michigan. (Robert Goodwin)

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California