DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases › Cold, Salty and Promiscuous—Gene-shuffling Microbes Dominate Antarctica’s Deep Lake

September 30, 2013

Cold, Salty and Promiscuous—Gene-shuffling Microbes Dominate Antarctica’s Deep Lake

Sequestered in Antarctica’s Vestfold Hills, Deep Lake became isolated from the ocean 3,500 years ago by the Antarctic continent rising, resulting in a saltwater ecosystem that remains liquid in extreme cold, and providing researchers a unique niche for studying the evolution of the microbes that now thrive under such conditions. Deep Lake’s microscopic inhabitants are dominated by haloarchaea, microbes that require high salt concentrations to grow and are naturally adapted to conditions – at minus 20°C – that would prove lethally cold to other organisms.  In a detailed analysis published online the week of September 30, 2013 in the journal Proceedings of the National Academy of Sciences (PNAS), researchers have, for the first time, been able to get a complete ecological picture of the Deep Lake microbial community.

A team led by Rick Cavicchioli of the University of New South Wales, Australia partnered with the U.S. Department of Energy Joint Genome Institute (DOE JGI) to generate sequence data from DNA isolated from individual microbes and compared them with metagenomic (microbial community) information sampled at various depths of Deep Lake.

Photo: Study senior author Rick Cavicchioli sampling from the deepest point of Antarctica’s Deep Lake. (Courtesy of Rick Cavicchioli)

Photo: Study senior author Rick Cavicchioli sampling from the deepest point of Antarctica’s Deep Lake. (Courtesy of Rick Cavicchioli)

“Understanding how haloarchaea can thrive in Deep Lake could be used to develop engineering concepts for reducing energy costs in a variety of situations, such as for cleaning up contaminated sites in permanently or seasonally cold regions,” Cavicchioli said. Owing to the ability of salt-loving enzymes to function under extremes, he suggests they could also be used as catalysts for peptide synthesis and enhanced oil recovery, and can function in water-organic solvent mixtures. “These enzymes will be especially useful for transforming contaminated sites with particularly high levels of petroleum-based products,” he added.

Deep Lake’s extremes have rendered the microbial neighborhood rather homogeneous.  Four isolates in the study represented about 72 percent of the cells in the community.  Though gene exchange across species boundaries is considered infrequent, the researchers observed that haloarchaea living in the Lake’s hypersaline environment practice it comparatively often, like neighbors “chewing the fat” in a small-town coffee klatch. “It’s intriguing that while gene exchange is rampant, species lineages appear to be maintained by virtue of each species having a high level of specialization, enabling niche partitioning and peaceful coexistence,” said Cavicchioli of their findings. “Haloarchaea are known for being ‘promiscuous,’ that is, prone to exchange DNA between themselves. Our study demonstrated that this exchange occurs at a much higher level than has previously been documented in nature. They communicate, share, specialize, and coexist.”

Photo: Deep Lake as an expedition work site in November 2008, shown with mobile work shelters and equipment for sampling. (Courtesy of Rick Cavicchioli)

Photo: Deep Lake as an expedition work site in November 2008, shown with mobile work shelters and equipment for sampling. (Courtesy of Rick Cavicchioli)

What distinguishes this “conversation” is that the haloarchaea of Deep Lake exchange the information of DNA not just between species but among distinct genera, and moreover in huge tranches, some 35,000 letters of code, with not a letter out of place. While it may be slow, that give-and-take is chock full of essential information and the word gets around the community. “The long stretches of highly identical shared sequence between the different lake organisms spurred a strong suspicion of potential cross-contamination at first,” said Tanja Woyke, Microbial Program Lead at the DOE JGI and co-author of the study. “By painstaking validation of the manually finished and curated genomes, however, we were able to exclude any process-introduced artifacts and confirm that this is true inter-genera gene exchange.”

Cavicchioli noted that, “as the content being shifted around lack core genes, it speaks to these microbes’ ability to be flexible and collaborative. This shuttled gene content could confer such benefits as resistance to viruses or bolster their ability to respond to specific environmental factors.  Moreover, the markers that we analyzed indicated that a high level of gene exchange occurs throughout the Deep Lake community.”

One particular microbial player, dubbed tADL, represented about 44 percent of the cell content of the lake community, which is one of the least productive environments on the planet with respect to synthesis of organic compounds from carbon dioxide. Most life on earth is dependent on this process, but microbial life in Deep Lake has only six generations of cell division annually, so tADL’s comparatively “high energy” metabolism makes it adept at degrading carbohydrates, with a particular taste for glycerol, a natural byproduct of the light-harvesting algae. “A key thing about what they eat is that by choosing different food sources they can coexist and continue to reproduce and eke out a living in relative harmony,” said Cavicchioli.

Cavicchioli acknowledged that the PNAS paper represents the synthesis of the more striking findings that arose from merging and analyzing collective data sets that have been assembled over the last eight years.  Along the way, a major milestone logged was the genome sequencing and analysis of the first member of the archaeal branch of the tree of life ever isolated from a polar environment.

“Every time we ‘poke an omics stick’ in there we find things we never expected,” Cavicchioli said. “Each lake also has its own unique characteristics, so there is a lot more to be discovered.  These Antarctic expeditions represent big logistical investments, with millions in funding from the Australian Antarctic Division and the Australian Antarctic Science Program leveraging the powerful resources of JGI.  As a long-term investment strategy, this has proven to be an excellent model of how a flexible group of clever scientists can provide a sure path for enabling strong science to come to fruition.”

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to print (Opens in new window)

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. JGI provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @jgi on Twitter.

DOE’s Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Filed Under: News Releases

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles

Related Content:

Introducing New Members of the JGI User Executive Committee

incoming 2023 UEC members

JGI Contributes Nine to 2022 Highly Cited Researchers List

Nine headshots, one for each researcher, laid out beside a purple ribbon reading, "Home to Highly Cited Researchers 2022 Clarivate"

JGI announces first round of 2023 New Investigator awardees

Digital ID card with 10 headshots reads: Congratulations to our 2023 New Investigator recipients!

JGI at 25: Following Fungi that Pry Apart Plant Polymers

A brown goat with white horns looks at green hay

Exploring Possibilities: 2022 JGI-UC Merced Interns

2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)

JGI at 25: Using team science to build communities around data

  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California