The button mushroom occupies a prominent place in our diet and in the grocery store where it boasts a tasty multibillion-dollar niche, while in nature, Agaricus bisporus is known to decay leaf matter on the forest floor. Now, owing to an international collaboration of two-dozen institutions led by the French National Institute for Agricultural Research… [Read More]
While the flower may attract the bee and the admiring eye of the passerby, it is the unseen complex network of life below ground where the action is. The microbial community or microbiome that inhabits the rhizosphere and endosphere —the niches immediately surrounding and inside a plant’s root—facilitates the shuttling of nutrients and information into… [Read More]
For want of a nail, the nursery rhyme goes, a kingdom was lost. A similar, seemingly innocuous change—the evolution of a lineage of mushrooms—may have had a massive impact on the carbon cycle, bringing an end to the 60-million year period during which coal deposits were formed. Coal generated nearly half of the roughly four… [Read More]
In the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico two years ago, various strategies were deployed to prevent 4.9 million barrels of light crude oil from fouling the waters and reaching the shores. A team of Lawrence Berkeley National Laboratory (Berkeley Lab) researchers found that nature also played a role… [Read More]
Arranging DNA fragments into a genome sequence that scientists can interpret is a challenge often compared to assembling a puzzle, except there is no box to provide an idea of what the picture is even supposed to be. Sometimes there’s guidance in the form of other publicly-available DNA sequences from related organisms that can be… [Read More]
Without fungi and microbes to break down dead trees and leaf litter in nature, the forest floor might look like a scene from TV’s “Hoarders.” Massive-scale genome sequencing projects supported by the U.S. Department of Energy (DOE) and being carried out at the DOE Joint Genome Institute (JGI) highlight the importance of learning how the… [Read More]
WALNUT CREEK/BERKELEY, Calif.—For a pest that isn’t quite the size of a comma on a keyboard, the two-spotted spider mite can do a disproportionate amount of damage. These web-spinners extract the nutrients they need from leaves of more than a thousand different plant species, including bioenergy feedstocks and food staples. The cost of chemically controlling… [Read More]
WALNUT CREEK/BERKELEY, Calif.—From the North Pole to the Arctic Ocean, the frozen soils within this region keep an estimated 1,672 billion metric tons of carbon out of the Earth’s atmosphere. This sequestered carbon is more than 250 times the amount of greenhouse gas emissions attributed to the United States in the year 2009. As global… [Read More]
WALNUT CREEK, Calif.—According to roadside signs, the number of burgers served has eclipsed the billion mark, while the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) will now serve up trillions of nucleotides of information from scores of newly-selected projects geared to feed the data-hungry worldwide research community. The 2012 Community Sequencing Program (CSP)… [Read More]
WALNUT CREEK, Calif.—The nation’s Renewable Fuels Standard calls for annual production of 36 billion gallons of biofuel by 2022. One of the biggest hurdles to achieving this goal lies in optimizing the multistep process involved in breaking down plant biomass and then converting it into fermentable sugars that can be refined into fuel for our… [Read More]