To find out what makes these microbe-plant interactions “tick,” scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory decoded the genome of a plant-dwelling microbe they’d previously shown could increase plant growth by 40 percent. Their studies, described online in PLoS Genetics, identified a wide range of genes that help explain this symbiotic success story. The work could move the approach of using bacteria as growth-promoting agents one step closer to implementation for improved agriculture and biofuel production.“To fuel and feed the planet for the future, we need new approaches,” said Brookhaven scientist Safiyh Taghavi, the study’s lead author. “Biofuels derived from plants are an attractive alternative energy source, but many biofuel feedstock crops are in direct competition with food crops for agricultural resources such as land, water, and fertilizers. Our research is looking for ways to improve the growth of biofuel feedstock plants on land that cannot be economically used for food production. What we learn might also be put to use to increase the productivity of food crops,” she added.
Read more on redOrbit.