DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Science Programs
    • Science Highlights
    • Scientists
    A vertical tree stump outdoors with about a dozen shiitake mushrooms sprouting from its surface.
    Tracing the Evolution of Shiitake Mushrooms
    Understanding Lentinula genomes and their evolution could provide strategies for converting plant waste into sugars for biofuel production. Additionally, these fungi play a role in the global carbon cycle.

    More

    Soil Virus Offers Insight into Maintaining Microorganisms
    Through a collaborative effort, researchers have identified a protein in soil viruses that may promote soil health.

    More

    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    A panoramic view of a lake reflecting a granite mountain.
    Genome Insider: Methane Makers in Yosemite’s Lakes
    Meet researchers who sampled the microbial communities living in the mountaintop lakes of the Sierra Nevada mountains to see how climate change affects freshwater ecosystems, and how those ecosystems work.

    Listen

    A light green shrub with spiny leaves, up close.
    Genome Insider: A Shrubbier Version of Rubber
    Hear from the consortium working on understanding the guayule plant's genome, which could lead to an improved natural rubber plant.

    Listen

    The switchgrass diversity panel growing at the Kellogg Biological Station in Michigan. (David Lowry)
    Mapping Switchgrass Traits with Common Gardens
    The combination of field data and genetic information has allowed researchers to associate climate adaptations with switchgrass biology.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    iPHoP image (Simon Roux)
    iPHoP: A Matchmaker for Phages and their Hosts
    Building on existing virus-host prediction approaches, a new tool combines and evaluates multiple predictions to reliably match viruses with their archaea and bacteria hosts.

    More

    Abstract image of gold lights and squares against a black backdrop
    Silver Age of GOLD Introduces New Features
    The Genomes OnLine Database makes curated microbiome metadata that follows community standards freely available and enables large-scale comparative genomics analysis initiatives.

    More

    Graphical overview of the RNA Virus MetaTranscriptomes Project. (Courtesy of Simon Roux)
    A Better Way to Find RNA Virus Needles in the Proverbial Database Haystacks
    Researchers combed through more than 5,000 data sets of RNA sequences generated from diverse environmental samples around the world, resulting in a five-fold increase of RNA virus diversity.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    Green plant matter grows from the top, with the area just beneath the surface also visible as soil, root systems and a fuzzy white substance surrounding them.
    Supercharging SIP in the Fungal Hyphosphere
    Applying high-throughput stable isotope probing to the study of a particular fungi, researchers identified novel interactions between bacteria and the fungi.

    More

    Digital ID card with six headshots reads: Congratulations to our 2022 Function Genomics recipients!
    Final Round of 2022 CSP Functional Genomics Awardees
    Meet the final six researchers whose proposals were selected for the 2022 Community Science Program Functional Genomics call.

    More

    croppe image of the JGI helix sculpture
    Tips for a Winning Community Science Program Proposal
    In the Genome Insider podcast, tips to successfully avail of the JGI's proposal calls, many through the Community Science Program.

    Listen

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    2022 JGI-UC Merced interns (Thor Swift/Berkeley Lab)
    Exploring Possibilities: 2022 JGI-UC Merced Interns
    The 2022 UC Merced intern cohort share how their summer internship experiences have influenced their careers in science.

    More

    image from gif that shows where in the globe JGI fungal collaborators are located.
    Using Team Science to Build Communities Around Data
    As the data portals grow and evolve, the research communities further expand around them. But with two projects, communities are forming to generate high quality genomes to benefit researchers.

    More

    Cow Rumen and the Early Days of Metagenomics
    Tracing a cow rumen dataset from the lab to material for a hands-on undergraduate research course at CSU-San Marcos that has since expanded into three other universities.

    More

All JGI Features
Home › Items tagged with: Brachypodium

Content Tagged "Brachypodium"

Page 2 of 2«12

February 25, 2010

Brachypodium project in Biofuels Digest

In Washington, researchers at the USDA and the Joint Genome Institute today announced that they have completed sequencing the genome of Brachypodium distachyon, similar to switchgrass – as a model organism that is similar to but easier to grow and study than important agricultural crops, used by plant scientists the way other researchers use lab… [Read More]

February 24, 2010

Brachypodium genome project on CORDIS

Some grass species play a pivotal role in meeting our food supply needs. We have also seen a surge in the domestication of new grass crops for feedstock production and sustainable energy. Experts say, however, that failure to understand how genes work and a lack of knowledge about their large and complex genomes lead to… [Read More]

February 23, 2010

Brachypodium project on Huffington Post

In a study published Feb. 11 in the journal Nature, researchers from the department’s Joint Genome Institute in Walnut Creek, which is managed in part by Lawrence Berkeley National Laboratory, sequenced a form of wild grass in order to derive a genome specifically adapted for biomass and biofuel production. Read more at The Huffington Post.  [Read More]

February 19, 2010

Brachy genome project on ScienceCentric

Brachypodium is actually a wild annual grass plant, native to the Mediterranean and Middle East, with little agricultural importance and is of no major economic value itself. But it allows researchers to obtain genetic information for grasses much more easily than some of its related, but larger and more complex counterparts with much larger genomes… [Read More]

February 19, 2010

Brachy genome project on OfficialWire

A British- and U.S.-led international consortium says it has sequenced the first member of the wheat and barley group of grasses. The scientists, led by Britain’s John Innes Center, the U.S. Department of Energy’s Joint Genome Institute, the U.S. Department of Agriculture and Oregon State University, said the genome sequencing was of the wild grass… [Read More]

February 19, 2010

Brachy genome project on Federal Times

Federal researchers have been hard at work trying to develop alternate sources of clean renewable energy, and yesterday they announced a major breakthrough in their efforts. Scientists from the Agriculture Department and the Energy Department’s Joint Genome Institute for the first time have sequenced the genes of a wild grass species. The research, which is… [Read More]

February 18, 2010

Brachypodium genome project on Farm Futures

USDA scientists and their colleagues at the Department of Energy’s Joint Genome Institute say they have completed sequencing the genome of a kind of wild grass that will enable researchers to shed light on the genetics behind hardier varieties of wheat and improved varieties of biofuel crops. The grass, Brachypodium distachyon, can be used by… [Read More]

February 18, 2010

Brachypodium genome project on UPI

The scientists, led by Britain’s John Innes Center, the U.S. Department of Energy’s Joint Genome Institute, the U.S. Department of Agriculture and Oregon State University, said the genome sequencing was of the wild grass Brachypodium distachyon.   The researchers said three different groups of grasses, represented by corn, rice and wheat, provide most of the… [Read More]

February 18, 2010

Brachypodium genome project on UC Newsroom

“The sequencing and analysis of the Brachypodium genome is an important advance toward securing sustainable supplies of food, feed and fuel from new generations of grass crops,” said DOE JGI collaborator John Vogel of the U.S. Department of Agriculture Agricultural Research Service (ARS). “Since Brachypodium has the traits required to serve as a functional model… [Read More]

February 18, 2010

Brachypodium genome on ScienceDaily

Representative genomes for two of the three major subfamilies of grasses ⎯ those that include rice, maize, sorghum and sugar cane⎯ have already been sequenced. Now in the February 11 edition of the journal Nature, the International Brachypodium Initiative, a consortium which includes researchers from the DOE Joint Genome Institute (DOE JGI), presents the complete… [Read More]
Page 2 of 2«12

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2023 The Regents of the University of California