

## Approved Proposals FY25

Following are the approved user proposals for Annual Community Science Program (CSP), <u>FICUS JGI-EMSL</u>, CSP Functional Genomics and CSP New Investigator calls.

## FY 2025 Annual CSP Proposals

| Proposer<br>Name  | Affiliation                                  | Proposal Title                                                                                                                                         | Proposal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Barnhart, Elliott | United States<br>Geological<br>Survey (USGS) | Exploring Fungal<br>Contributions to<br>Carbon Cycling in<br>Deep Subsurface<br>Organic-Rich<br>Environments<br>Across Depth and<br>Salinity Gradients | Biogenic natural gas (BNG) is a<br>valuable energy source that has<br>typically been thought to form<br>through the activities of specific<br>bacteria and methanogens living<br>deep underground. However,<br>recent research suggests that<br>fungi, which also live in these<br>deep environments, may play an<br>important role in the creation of<br>this natural gas and in the<br>cycling of carbon below the<br>Earth's surface. This project<br>aims to close this knowledge<br>gap by studying and sequencing<br>the DNA of fungi found in<br>subsurface locations such as<br>shale, petroleum deposits, and<br>coal beds where BNG is<br>present. This database will be a<br>comprehensive resource,<br>helping scientists across the<br>country better understand the |

|                    |                              |                                                                                                                  | formation of BNG and the role of fungi play in underground carbon cycling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Borton,<br>Mikayla | Colorado State<br>University | Decoding the<br>Unifying Microbial<br>Metabolic<br>Controllers on<br>Carbon Cycling<br>Across Saturated<br>Soils | Saturated soils are<br>characterized as waterlogged<br>soils, rich in organic matter, with<br>low concentrations of porewater<br>oxygen. Anoxic microbial<br>decomposition of this soil<br>organic matter leads to the<br>production of greenhouse<br>gasses such as carbon dioxide<br>and methane. Likewise, these<br>climatically important soils also<br>store a substantial amount of<br>soil organic carbon. Despite this<br>climate relevance, the microbial<br>communities and metabolic<br>pathways driving carbon<br>decomposition, along with their<br>environmental controls, remain<br>unresolved. A key outcome of<br>this project will be development<br>of the Multi-omics for<br>Understanding Climate Change<br>(MUCC) database, a necessary<br>step for advancing knowledge of<br>the interacting geochemical,<br>ecological, and hydrological<br>constraints on saturated soil<br>microbiomes. |

| Carlson, John | Penn State<br>University | Super-PanGenom<br>es for Gene<br>Discovery and<br>Climate-Resiliency<br>Research and<br>Breeding in<br>Eastern Oak<br>Syngameons | Forests globally account for<br>nearly 45% (900 pentagrams) of<br>the carbon stored terrestrially<br>and sequester 2.4 pentagrams<br>of carbon annually, providing<br>long-term carbon sequestration<br>in above and below ground tree<br>biomass and harvested wood<br>products. Northern boreal and<br>temperate forests are the most<br>active terrestrial carbon sinks,<br>despite facing many threats from<br>invasive pests, changing land<br>use, and rapidly changing<br>climate. Prospects for achieving<br>carbon neutrality and resilience<br>to climate change rely in large<br>part on forests and tree<br>plantations continuing to<br>efficiently sequester large<br>amounts of carbon in biomass<br>and forest products. For forests<br>to fulfill that role, as climates<br>change populations of trees in<br>northern forests must either<br>migrate with the shifting<br>conditions or 'adapt' in place<br>through replacement (mortality)<br>of previously fit trees with<br>seedlings with the genetic<br>potential to survive and grow<br>under the new climatic<br>conditions. Oaks account for a<br>substantial portion of the carbon<br>storage of northern temperate<br>forests. Oaks are also important<br>to forest product-based<br>industries and as keystone<br>species providing essential<br>ecosystem services to our<br>communities. The past success<br>of oaks in migration and |
|---------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

adaptation in response to new environmental conditions following the last ice age resulted in oaks becoming one of the most widespread, dominant, and species-rich groups of trees in northern hemisphere temperate forests. This has led to oaks becoming a focus of research into the genetic basis of adaptation to the environment in long-lived hardwood trees. It has long been observed that closely related oak species can produce hybrid offspring when they co-exist in natural forests. Has this ability to share genes among oaks species with different environmental adaptations contributed to the ability of oaks to adapt to past climate changes? What can we learn about hybridization among oaks to assist in conserving and improving their important roles in climate resiliency and bio-based products? This Community Science Program project will develop a "super pangenome" research platform to answer those questions through detailed investigations of natural genetic exchange by hybridization within the two major sections of the oak genus – the white oaks and the red oaks. The research platform, consisting of newly sequenced and assembled genomes and genetic diversity data for 16 oak species in the eastern US, will enable

|                     |                         |                                                                                                                           | geneticists to learn what genes<br>and segments of chromosomes<br>are shared among interbreeding<br>oak species, how each species<br>remains distinct genetically<br>despite hybridization, and if<br>diagnostic tests can be<br>developed to assist in sustaining<br>oak forests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conway,<br>Jonathan | Princeton<br>University | Promoter<br>Discovery and<br>Characterization to<br>Enable Metabolic<br>Engineering in<br>Lignocellulosic<br>Thermophiles | Anaerobic, lignocellulosic,<br>thermophiles are a promising<br>group of candidate<br>microorganisms for<br>lignocellulosic bioprocessing<br>because of their native ability to<br>degrade cellulose and<br>hemicellulose in lignocellulosic<br>biomasses. Consolidated<br>BioProcessing schemes utilizing<br>these organisms would enable<br>the degradation of lignocellulose<br>and conversion to product in one<br>reactor, but require tools to<br>genetically manipulate product<br>pathways in these organisms.<br>This project will enable the<br>creation of a library of promoters<br>that will be characterized in vivo<br>for their ability to drive protein<br>expression at known levels. We<br>will utilize these characterized<br>promoters to optimize the<br>acetone production pathway in<br>Caldicellulosiruptor bescii as a<br>demonstration of the<br>engineering necessary to<br>improve the titer of a chemical<br>product from a lignocellulosic<br>thermophile. We will also<br>pioneer the use of CRISPRi in |

|                     |                  |                                                                                                                                       | C. bescii which will offer another<br>level of transcriptional control in<br>this organism for discovery and<br>engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Damashek,<br>Julian | Hamilton College | Genome-resolved<br>and activity-based<br>archaeal ecology<br>in a euxinic<br>meromictic lake<br>(Fayetteville Green<br>Lake, NY, USA) | Though archaea are single cells<br>like bacteria, they are more<br>closely related to eukaryotes,<br>the group including plants and<br>animals. For this reason, there is<br>wide interest in understanding<br>the roles archaea played in the<br>evolution of eukaryotic cells.<br>This project aims to study one<br>group of enigmatic archaea, the<br>Woesearchaeota, in Fayetteville<br>Green Lake (NY). Green Lake is<br>"meromictic," meaning that<br>unlike most lakes, it never<br>mixes. By using a variety of<br>high-throughput sequencing<br>techniques, we will analyze<br>archaeal dynamics at many<br>depths in Green Lake, with a<br>specific interest in determining<br>the activity of Woesearchaeota<br>and the role they play in cycling<br>carbon and nutrients in the lake.<br>This unprecedented insight into<br>some of their basic biological<br>characteristics will not only teach<br>us about this fascinating group<br>of archaea, but will help<br>understand their contribution to<br>regional and global carbon and<br>nutrient cycling. |

| de Vries,<br>Ronald | Westerdijk Fungal<br>Biodiversity<br>Institute | Revealing the<br>diversity of primary<br>carbon metabolism<br>across the fungal<br>kingdom | Primary carbon metabolism<br>enables fungi to convert sugars<br>e.g., obtained from degradation<br>of plant biomass, into the<br>compounds and energy needed<br>its growth and reproduction.<br>With the availability of an<br>increasing number of genome<br>sequences it has become clear<br>that the organization of primary<br>carbon metabolism in fungi is<br>highly diverse and that it is<br>difficult to transfer knowledge<br>between more distantly related<br>fungi. In this project we aim to<br>classify this diversity by making<br>validated reference models for<br>primary carbon metabolism for<br>most main taxonomic groups of<br>fungi. This will not only provide a<br>better understanding of this<br>central physiological process,<br>but also provide insights into the<br>potential role of individual fungi<br>in their natural environment. It<br>will also provide us with the in<br>depth knowledge of metabolism<br>to enable the generation of<br>improved and novel fungal cell<br>factory to produce a wide range<br>of biochemicals to from<br>sustainable resources to replace<br>chemical synthesis from fossil<br>resources. |
|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|               | 1          | I                  | l.                                  |
|---------------|------------|--------------------|-------------------------------------|
| Dieter, Emily | Gettysburg | Investigation of   | A thorough understanding of         |
|               | College    | Radical            | methanogens is needed to            |
|               |            | S-Adenosyl-L-met   | mitigate or harness methane         |
|               |            | hionine enzymes    | production, yet methanogens         |
|               |            | hypothesized to be | often inhabit extreme               |
|               |            | involved in        | environments, making them           |
|               |            | Methanogenic       | extremely difficult to study in the |
|               |            | Archaea            | laboratory. In this project,        |
|               |            | metabolism         | researchers will investigate        |
|               |            |                    | biological processes of             |
|               |            |                    | methanogens by expressing key       |
|               |            |                    | methanogen proteins in              |
|               |            |                    | organisms that are more             |
|               |            |                    | amenable to growth in a             |
|               |            |                    | laboratory environment. Proteins    |
|               |            |                    | will be purified from the host,     |
|               |            |                    | then functionally characterized     |
|               |            |                    | outside of the organism. This       |
|               |            |                    | research is ultimately expected     |
|               |            |                    | to provide valuable insight into    |
|               |            |                    | fundamental biological              |
|               |            |                    | processes in methanogens.           |
|               |            |                    |                                     |
|               |            |                    |                                     |

| Hord, Ashlynn | University of<br>Tennessee,<br>Knoxville | Are rear-edge or<br>relict populations<br>reservoirs for<br>resilience genes?<br>Biogeographic<br>patterns of genetic<br>variation and<br>introgression in a<br>riparian tree<br>species | Introgression, or the movement<br>of genes between species via<br>interspecific hybridization,<br>followed by backcrossing<br>between hybrids and parental<br>species, has been hypothesized<br>to increase species' resilience to<br>climate change. Our study<br>proposes to use JGI-generated<br>annotated genomes and<br>resequencing for two<br>ecologically and economically<br>important species, Populus<br>angustifolia (narrowleaf<br>cottonwood) and P. fremontii<br>(Fremont cottonwood). We aim<br>to: 1) Understand how<br>populations of these riparian,<br>foundation tree species are<br>adapting to climate change; and<br>2) Determine whether hybrid<br>introgression is a prominent<br>mechanism by which this<br>adaptation occurs. Identifying<br>the role of introgression and the<br>genomic underpinnings of<br>climate change adaptation in<br>these natural populations will<br>broaden the toolkit for<br>sustainable production of the<br>well-studied bioenergy feedstock<br>candidate and congeneric<br>species, Populus trichocarpa. |
|---------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|           | 1                                                               |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| John, Uwe | Alfred Wegener<br>Institute for Polar<br>and Marine<br>Research | The role of niche<br>adaptability in the<br>evolution of the<br>harmful alga,<br>Alexandrium<br>catenella:<br>Dinophyceae | Harmful algal blooms (HABs), in<br>particular those caused by toxic<br>dinoflagellates, have devastating<br>impacts on fisheries and the<br>aquaculture industry, resulting in<br>a global annual loss of ~\$7.5<br>billion. HABs pose significant<br>human health risks through<br>seafood poisoning and are<br>becoming more frequent in<br>warming oceans due to climate<br>change. However, the molecular<br>and evolutionary mechanisms<br>that result in HABs are poorly<br>understood due to a lack of<br>genomic data from the<br>dinoflagellate species that cause<br>these events. This project will<br>address this crucial knowledge<br>gap by generating high-quality<br>genomic and transcriptomic<br>resources from the globally<br>distributed, HAB-causing<br>dinoflagellate, Alexandrium<br>catenella (genome size ~50<br>Gbp). This dinoflagellate is<br>responsible for HABs across<br>these regions worldwide,<br>resulting in detrimental impacts<br>to local fisheries and<br>aquaculture. Genes, functions,<br>and candidate biomarkers<br>identified from the A. catenella<br>data will of high societal<br>relevance by helping guide<br>risk-mitigation, prevention, and<br>management strategies of<br>harmful algal blooms. |

| Khare, Sagar | Rutgers<br>University | Targeted<br>high-throughput<br>design of<br>biocatalysts for<br>degrading selected<br>polymers | We are being inundated by large<br>quantities of polymeric materials,<br>directly or indirectly<br>anthropogenic, often made with<br>carbon derived from petroleum<br>sources. For example, the great<br>pacific garbage patch contains<br>human-made plastics, and<br>brown algal blooms are<br>devastating the economies of<br>many communities in the<br>Atlantic ocean. Nature has<br>developed fledgling catalysts –<br>enzymes – that can degrade<br>these polymers and large-scale<br>metagenome sequencing efforts<br>have made the genetic<br>sequences of these enzymes<br>available. However, these<br>molecules have evolved in<br>specific environmental niches<br>(e.g. ocean floor) and generally<br>remain unavailable to us as<br>these proteins are not robust to<br>production conditions in<br>common recombinant production<br>strains and the conditions<br>required for industrial<br>biocatalysis. This work will<br>discover the protocols for<br>high-throughput design and<br>optimization that enable the<br>routine and rapid development<br>of highly active biocatalysts from<br>diverse environmental niches. |
|--------------|-----------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------|-----------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Manzitto-Tripp,<br>Erin | University of<br>Colorado-Boulder | Engineering<br>drought-tolerant<br>pennycress via<br>loss-of-function<br>alleles observed in<br>an aridity<br>extremophile | The Namib and Kaokoveld<br>Deserts are two of the oldest<br>and driest deserts on Earth. The<br>average precipitation in the<br>region is <100 mm/yr and<br>because inter-annual rainfall is<br>highly variable, many plants in<br>these deserts survive for years<br>to decades with little or no<br>precipitation. Despite this<br>extreme aridity, these deserts<br>harbor some very interesting<br>plant lineages. Pennycress<br>(Thlaspi arvense) is emerging as<br>a new oilseed crop with great<br>potential as a cover crop as well.<br>Closely related to the model<br>plant Arabidopsis, it is ideal to<br>translate specific discoveries to<br>the field. We propose to expedite<br>pennycress crop improvement –<br>specifically drought tolerance –<br>using a gene knockout strategy<br>in which pennycress target loci<br>are identified based on<br>Petalidium loss-of-function (LoF)<br>alleles. LoF alleles encode<br>premature stop codons,<br>frameshifts, splice site<br>disruptions, or point mutations<br>that render encoded proteins<br>non-functional. |
|-------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Poulin, Lucie | Université de<br>Nantes,<br>Laboratoire de<br>Biologie et<br>pathologie<br>Végétales | Plant – plant<br>interactions<br>mediated by<br>rhizosphere<br>microbiota using<br>the model:<br>Arabidopsis<br>thaliana (L.) Heynh<br>– Phelipanche<br>ramosa (L.) Pomel | Plants are essential to modern<br>society, providing numerous<br>ecological benefits. It's crucial to<br>understand how plants interact<br>within ecosystems, including<br>their relationships with other<br>organisms and with each other.<br>Over the last decade, scientists<br>have discovered that microbes<br>play a vital role in these<br>interactions, potentially offering<br>solutions to contemporary<br>challenges. Broomrape is a<br>significant pest in the US and<br>Europe, infesting many crops,<br>and current solutions to control it<br>are not very effective. We aim to<br>understand the complex<br>molecular communication that<br>happens in the soil between<br>parasitic plants, their host plants,<br>and the soil microbes that can<br>influence these interactions and<br>the resulting parasitism. This<br>project explores how soil<br>microbes affect the signaling<br>molecules in the vicinity of the<br>host plant and, in turn, how this<br>influences the growth of<br>branched broomrape. By<br>understanding how parasitic<br>plants like broomrape operate in<br>their complex environment, we<br>hope to develop better<br>agricultural strategies. |
|---------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Probst,<br>Alexander | University of<br>Duisburg-Essen | Genomic<br>expansion of<br>freshwater algae<br>and their<br>interacting bacteria<br>and viruses | Algae are important organisms<br>on planet Earth as they<br>transform carbon dioxide into<br>organic matter fueling the food<br>chain in freshwater ecosystems.<br>They are extremely diverse in<br>nature and often associate with<br>other organisms like bacteria<br>that help them to acquire<br>nutrients like nitrogen<br>compounds. Beyond the fact<br>that some need other organisms<br>to make a living, some algae<br>have evolved capabilities to<br>acquire carbon from other<br>sources like carbohydrates. The<br>evolution of the acquisition of<br>these capabilities is little<br>understood as is the interaction<br>of algae with other organisms.<br>This multi-faceted project will<br>harness a wide-ranging<br>collaborative effort to reveal<br>genetic treasures kept within<br>algal genomes that shape their<br>important contributions to Earth's<br>carbon and nitrogen cycles. |
|----------------------|---------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------|---------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Sullivan,<br>Matthew | The Ohio State<br>University | Ecogenomics and<br>biogeochemical<br>modeling of DNA<br>and RNA viruses<br>across<br>terrestrial-marine<br>interfaces | Microbes drive most of the<br>natural processes (like nutrient<br>cycling) that keep our planet<br>running and ecosystem healthy<br>and in balance. However, in<br>recent years it has been found<br>that viruses that infect these<br>environmentally-important<br>microbes play a crucial role in<br>influencing these microbial<br>activities. This proposal aims to<br>examine virus communities and<br>their hosts in less-studied areas<br>where land and ocean meet:<br>terrestrial-marine interfaces<br>located at two major 'ocean<br>features' – the Benguela<br>Upwelling off the coast of<br>southern Africa and the Amazon<br>River plume, which seed<br>gigatons of carbon into the<br>ocean currents. Our research<br>will provide a detailed and<br>comprehensive resource that will<br>help improve our understanding<br>of how microbes and viruses<br>impact climate-sensitive<br>environments. This knowledge is<br>vital for predicting how these<br>ecosystems might change in the<br>future and how they can be<br>managed to support a healthy<br>planet. |
|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Sumner, Dawn | University of<br>California Davis | Seasonal<br>Metabolism<br>Changes Across<br>Redox Gradients<br>in Photosynthetic<br>Mats, Lake Fryxell,<br>Antarctica | Rocky desert valleys in<br>Antarctica commonly host<br>ice-covered lakes with microbial<br>communities living on the lake<br>floors. When enough light<br>penetrates the ice cover,<br>photosynthetic bacteria and<br>algae convert carbon into<br>biomass to support unusual,<br>cold adapted ecosystems. Due<br>to the high latitude of the lakes,<br>photosynthesis can only occur<br>part of the year. Similarly,<br>researchers can only study<br>these communities during spring<br>and summer. Thus, little is<br>known about how these<br>communities change during the<br>>4 month long winter when no<br>oxygen is produced. By studying<br>tvariations across the seasons<br>and at different depths in the<br>lake, which have different<br>amounts of light and oxygen, we<br>will gain insights into how<br>photosynthesis supports these<br>ecosystems and how the<br>communities may respond to<br>changes in lake level and ice<br>cover associated with climate<br>change. |
|--------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ward,<br>Christopher  | Bowling Green<br>State University | Opening the<br>floodgates: how<br>hydroelectric dam<br>removal led to<br>reshuffling of<br>downstream<br>microbial plankton<br>community and<br>biogeochemical<br>potentials in a<br>freshwater estuary | Many hydroelectric dams are<br>being removed from rivers<br>throughout the world in order to<br>restore water flow and access to<br>critical fish habitat. While<br>conducting a long-term time<br>series in Sandusky Bay (Ohio),<br>we discovered that dam removal<br>coincided with the<br>disappearance of harmful<br>cyanobacterial bloom, overall<br>improved water quality and<br>restructured microbial<br>community in the downstream<br>water body. By improving our<br>understanding of nutrient cycling<br>and functional diversity in a<br>freshwater estuary, we can<br>clarify the connections between<br>energy and environmental<br>genomics, supporting<br>stewardship of US and global<br>natural resources. |
|-----------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Willoughby,<br>Andrew | Duke Univeristy                   | Gesneriaceae<br>genomes to unlock<br>novel biology for<br>plant regeneration                                                                                                                            | The ability to regrow plants from<br>cuttings, or plant regeneration, is<br>essential to plant research and<br>the biotech industry. The<br>difficulty in getting important crop<br>plants (especially bioenergy<br>crops) to regenerate is a<br>bottleneck in these fields that<br>this research is aimed at<br>addressing. To understand the<br>limitations on plant regeneration,<br>we are establishing a new model<br>system, the genus<br>Streptocarpus. Streptocarpus is<br>the group that the common<br>ornamentals African violets and<br>Cape primroses come from. It                                                                                                                                                |

| of Agriculture microbial gene<br>expression and<br>metabolite profiles<br>in response to<br>varying resource<br>levels in dryland<br>soils.                                                                                                                                                                                                                                                                                  |                 |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and release carbon, a key<br>element that influences climate<br>change. Our study will focus on<br>three key nutrients: carbon,<br>nitrogen, and phosphorus. We<br>will experiment by adding<br>different amounts of these<br>nutrients to bare soil samples<br>and observe how the microbial<br>communities in these soils<br>respond. These tiny organisms<br>play a crucial role in breaking<br>down organic material and | Young, Kristina | microbial gene<br>expression and<br>metabolite profiles<br>in response to<br>varying resource<br>levels in dryland | development that promotes<br>regeneration.<br>This project aims to explore how<br>the availability of nutrients<br>affects the processes in dryland<br>soils, which are areas with low<br>moisture levels. By<br>understanding these processes,<br>we hope to gain insights into<br>how these soils contribute to the<br>broader environment, especially                                                                                                                                                                                                                                                                                                                |
| how different microbial species<br>react to nutrient changes, we<br>can better understand which<br>microbes are more active and                                                                                                                                                                                                                                                                                              |                 |                                                                                                                    | in terms of how they process<br>and release carbon, a key<br>element that influences climate<br>change. Our study will focus on<br>three key nutrients: carbon,<br>nitrogen, and phosphorus. We<br>will experiment by adding<br>different amounts of these<br>nutrients to bare soil samples<br>and observe how the microbial<br>communities in these soils<br>respond. These tiny organisms<br>play a crucial role in breaking<br>down organic material and<br>cycling nutrients. By studying<br>how different microbial species<br>react to nutrient changes, we<br>can better understand which<br>microbes are more active and<br>how they contribute to soil health |

FY 2025 Facilities Integrating Collaboration for User Science (FICUS) JGI-EMSL Proposals

| Proposer           | Affiliation        | Proposal Title                                                                                                         | Proposal Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frank,<br>Margaret | Cornell University | Multi-omics<br>discovery of<br>long-distance<br>mobile signals<br>involved in<br>vascular plant<br>carbon partitioning | Intercellular communication in<br>vascular plants is fundamental to<br>understanding biomass<br>allocation, particularly in the<br>context of carbon accumulation<br>and partitioning between root<br>and shoot systems. Despite<br>significant advancements, a<br>comprehensive view of the<br>molecular signals governing this<br>process is still lacking. Our<br>project addresses this gap by<br>employing a multidisciplinary,<br>multi-omics approach integrating<br>genomics, proteomics, and<br>advanced imaging techniques.<br>Our proposal and research<br>involve identifying and<br>functionally characterizing<br>mobile signals, including RNAs,<br>proteins, and hormones. The<br>significance of our research lies<br>in its potential to revolutionize<br>our understanding of intercellular<br>communication in plants and its<br>implications for biomass<br>accumulation. |

| Hallam, Steven | University of<br>British Columbia | Targeted<br>multi-omics of<br>metabolically<br>active microbial<br>populations in<br>anaerobic<br>digesters<br>bioaugmented with<br>carbon-based<br>conductive<br>materials | Metabolic interactions are<br>integral to renewable natural gas<br>(RNG) production from different<br>biomass inputs in anaerobic<br>digestion (AD) environments.<br>One of the most important sets<br>of interactions involves<br>syntrophic acetate oxidizing<br>bacteria (SAOB) and<br>methanogenic archaea<br>ultimately responsible for<br>converting acetate into methane<br>and carbon dioxide, thus driving<br>the production of RNG. Here, we<br>aim to leverage this approach to<br>evaluate SAOB activity and<br>interactions in the context of an<br>incubator reactor system utilizing<br>conductive carbon cloth. We will<br>do this in the context of an<br>emerging bioinformatics<br>workflow that leverages<br>multi-omic datasets to construct<br>genome-resolved microbial<br>correlation networks in which<br>active microbial consortia<br>involved in bioenergy production<br>will be mapped. The resulting<br>activity-dependent<br>genome-resolved correlation<br>network will provide foundational<br>insights into the AD environment<br>understudy and will inform<br>strategies for optimizing<br>bioenergy production. |
|----------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Howard-Varon<br>a, Cristina | The Ohio State<br>University | Environmental<br>virus-microbe<br>interactions:<br>Regulation,<br>functions, and<br>ecosystem<br>footprints of<br>diverse virocells | Microbes are well recognized to<br>dominate most biomes on Earth,<br>but their fate is intertwined with<br>that of viruses. Viral infection<br>transforms cells into completely<br>new entities called 'virocells'<br>which are fundamentally<br>different from their uninfected<br>counterparts, as their main<br>objective is viral reproduction<br>rather than cell growth. Because<br>of that, in the very few<br>environmental virus-bacteria<br>model systems investigated,<br>virocells drastically alter (1)<br>intracellular transcripts, proteins,<br>and metabolites, (2) interactions<br>with other organisms, and (3)<br>interactions with the<br>environment. Despite these<br>efforts, environmental virocell<br>understanding still has<br>knowledge gaps. We propose to<br>close these knowledge gaps<br>through investigating both (i)<br>transcriptional regulatory<br>landscapes of diverse<br>virus-microbe interactions, and<br>(ii) biomolecules,functions, and<br>ecosystem outputs of variably<br>phage-resistant microbes. |
|-----------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Hultman, Jenni | University of<br>Helsinki | Illuminating the<br>role and function of<br>soil microbes in<br>Arctic greenhouse<br>gas cycling<br>through systems<br>biology multiomics<br>approaches | Global warming is more<br>pronounced in the Arctic regions<br>than the rest of the globe, with<br>recent estimates predicting the<br>Arctic warming four times faster<br>compared to the global average.<br>Arctic soils contain more than<br>half of the global soil organic<br>carbon stock and the role of<br>tundra soils to greenhouse gas<br>(GHG) emissions, particularly<br>methane (CH4), carbon dioxide<br>(CO2) and nitrous oxide (N2O),<br>are predicted to increase in the<br>future. However, it is still unclear<br>how such fundamental changes<br>will influence these ecosystems<br>and the high latitudes have the<br>potential for further substantial<br>positive feedbacks to climate<br>warming. A better understanding<br>of Arctic microbial communities<br>and their function as well as<br>considering changes in below-<br>and above-ground microclimatic<br>conditions together with<br>microbial activity, is crucial for<br>increased recognition of the<br>cycling of GHG in the northern<br>hemisphere and their impact on<br>climate change on a global<br>scale. |
|----------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Kohl, Lukas | University of<br>Eastern Finland | Growth efficiency<br>and carbon<br>allocation in the<br>peatland methane<br>cycle | The goal of this proposal is to<br>link process rates in the<br>methane cycle to microbial<br>growth rates and carbon<br>allocation(e.g. necromass<br>formation). Microbial growth<br>efficiency and carbon use<br>efficiency are key parameters in<br>biogeochemical models,<br>however, so far these growth<br>rates have not been measured<br>for individual microbial<br>processes. Similarly, the<br>formation rates of secondary<br>microbial compounds, as a<br>function of microbial growth and<br>transformation, is a crucial<br>parameter for understanding the<br>formation of both stabilized<br>organic matter and easily<br>decomposable/leachable,<br>dissolved organic matter. In this<br>project, we will conduct a<br>pioneering experiment that<br>addresses these questions for<br>methane oxidation, a central<br>process in the peatland methane<br>cycle. |
|-------------|----------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------|----------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Nuccio, Erin | Lawrence<br>Livermore<br>National<br>Laboratory | Illuminating the<br>contribution of<br>plant-associated<br>fungi to enhanced<br>rock weathering | Mutualistic associations between<br>plants and mycorrhizal fungi can<br>enhance plant productivity,<br>resilience to stress, and carbon<br>(C) allocation belowground. The<br>most ancient and common plant                                                                                                                                                                                                                                                 |
|--------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                 |                                                                                                 | symbionts are arbuscular<br>mycorrhizal fungi (AMF), which<br>colonize 72% of plant species<br>globally and are key contributors<br>to plant nutrition and the soil C<br>cycle. A recent estimate<br>suggests that synergistic<br>interactions between AMF and<br>soil microbes may contribute 70<br>Tg of assimilated plant N<br>annually. We propose to<br>investigate context-dependent<br>resource exchange of C and<br>nitrogen (N)between a bioenergy |
|              |                                                 |                                                                                                 | grass—Sorghum bicolor, a DOE<br>bioenergy flagship plant—and<br>two AMF guilds. We hypothesize<br>that AMF guilds have distinct<br>effects on the N cycling<br>microbes and resource flux,<br>where their two exploration<br>strategies will have tradeoffs for<br>N recovery depending on N<br>availability.                                                                                                                                               |

| Rempfert,<br>Kaitlin | Pacific Northwest<br>National<br>Laboratory | Unpacking the<br>metabolic basis of<br>carbon use<br>efficiency to<br>understand and<br>predict soil organic<br>carbon<br>accumulation | Microbial carbon use efficiency<br>(CUE) is a metric that describes<br>the microbial community's gross<br>biomass production per unit<br>substrate taken up over short<br>time scales. As soil organic<br>carbon (SOC) is highly<br>influenced by microbial growth<br>and biomass accumulation, CUE<br>is important for understanding<br>and predicting soil-climate<br>feedbacks. CUE is a complex<br>metric based largely on the<br>balance of metabolic<br>investments for building biomass<br>relative to other cellular<br>functional attributes in response<br>to environmental conditions. The                                                      |
|----------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                             |                                                                                                                                        | stable isotope-based<br>measurements of microbial<br>growth and assessments of<br>corresponding ecophysiological<br>microbial phenotypes. We aim to<br>pair multi-omic (transcriptomic<br>and metabolomic)profiling with<br>substrate-agnostic quantification<br>of microbial CUE as a function of<br>soil depth, seasonality, and soil<br>moisture to identify the<br>metabolic mechanisms driving<br>CUE and its sensitivity to<br>environmental change. This<br>work will generate a range of<br>CUE values under varying<br>environmental conditions which<br>can be incorporated by the<br>modeling community to improve<br>predictions of C-cycling. |

| Rippner, Devin | United States<br>Department of<br>Agriculture | Long term crop<br>rotations alter soil<br>function and prairie<br>carbon dynamics<br>to depth in<br>midwestern<br>cropping systems | Over the past 150 years, the<br>tallgrass prairie biome of central<br>North America has been rapidly<br>replaced by annual cropping<br>systems, transforming the region<br>into one of the world's most<br>productive grain areas. The<br>productivity of this region is in<br>large part attributed to the<br>nutrient rich soil organic matter<br>(SOM) that accumulated from<br>millenia of prairie growth.<br>However, much of this native<br>SOM has been lost over the last<br>150 years, raising concerns<br>about the sustainability of<br>current agricultural practices.<br>The proposed project will link<br>long-term agricultural<br>management practices and<br>hydrobiogeochemical functions<br>above and below the typical<br>plow layer at macro and<br>microscales. |
|----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Thompson,<br>Luke | Cornell University | Single-cell analysis<br>of Symbiont<br>physiology and<br>development using<br>fluorescent<br>protein-tagged cell<br>identity lines to<br>optimize<br>therapeutic<br>molecule delivery<br>to economically<br>important tree<br>crops. | Our lab has developed a new<br>biotechnology based on the<br>gall-forming bacteria<br>Agrobacterium tumefaciens. Our<br>technology combines target<br>gene expression with just the<br>plant growth regulator genes<br>from the bacteria. When our<br>modified A. tumefaciens applied<br>to a plant stem, the result is the<br>formation of a non-pathogenic<br>cluster of plant cells, referred to<br>as a Symbiont, that are<br>transgenic as opposed to the<br>host plant. Symbiont<br>technology is of course based<br>on a bacterial gene manipulation<br>system, but it can also be loaded<br>with molecular products from<br>other microbes. Therapeutics,<br>growth regulating molecules,<br>antibiotics or biopesticides can<br>be produced within the Symbiont<br>system and delivered directly to<br>the host plant reducing user and<br>environmental costs. Symbiont<br>technology grown in vitro has<br>also shown promise as a<br>biofactory for larger scale<br>production of these molecules;<br>this project focuses on<br>optimizing this promising<br>technology. |
|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Van Doren,<br>Steven | University of<br>Missouri | Visualization of the<br>Regulation of the<br>Enzyme that<br>Launches Oil<br>Synthesis in a New<br>Biofuel Crop | The oilseed crop pennycress is<br>being developed for sustainable<br>biofuel production. This project<br>will further develop ongoing<br>research for rational engineering<br>of fatty acid synthesis in<br>pennycress to "open the tap" for<br>oil biosynthesis. The central<br>questions of this project address<br>the structural mechanisms of<br>acceleration and slowing of the<br>biotin carboxylase (BC) activity<br>that launches oil synthesis in the<br>plastid. This will provide<br>structural and functional insight<br>into inhibition and activation of<br>plant oil biosynthesis. |
|----------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|