DOE Joint Genome Institute

  • COVID-19
  • About Us
  • Contact Us
  • Our Science
    • DOE Mission Areas
    • Bioenergy Research Centers
    • Science Programs
    • Science Highlights
    • Scientists
    Data yielded from RIViT-seq increased the number of sigma factor-gene pairs confirmed in Streptomyces coelicolor from 209 to 399. Here, grey arrows denote previously known regulation and red arrows are regulation identified by RIViT-seq; orange nodes mark sigma factors while gray nodes mark other genes. (Otani, H., Mouncey, N.J. Nat Commun 13, 3502 (2022). https://doi.org/10.1038/s41467-022-31191-w)
    Streamlining Regulon Identification in Bacteria
    Regulons are a group of genes that can be turned on or off by the same regulatory protein. RIViT-seq technology could speed up associating transcription factors with their target genes.

    More

    (PXFuel)
    Designer DNA: JGI Helps Users Blaze New Biosynthetic Pathways
    In a special issue of the journal Synthetic Biology, JGI scientific users share how they’ve worked with the JGI DNA Synthesis Science Program and what they’ve discovered through their collaborations.

    More

    A genetic element that generates targeted mutations, called diversity-generating retroelements (DGRs), are found in viruses, as well as bacteria and archaea. Most DGRs found in viruses appear to be in their tail fibers. These tail fibers – signified in the cartoon by the blue virus’ downward pointing ‘arms’— allow the virus to attach to one cell type (red), but not the other (purple). DGRs mutate these ‘arms,’ giving the virus opportunities to switch to different prey, like the purple cell. (Courtesy of Blair Paul)
    A Natural Mechanism Can Turbocharge Viral Evolution
    A team has discovered that diversity generating retroelements (DGRs) are not only widespread, but also surprisingly active. In viruses, DGRs appear to generate diversity quickly, allowing these viruses to target new microbial prey.

    More

  • Our Projects
    • Search JGI Projects
    • DOE Metrics/Statistics
    • Approved User Proposals
    • Legacy Projects
    Photograph of a stream of diatoms beneath Arctic sea ice.
    Polar Phytoplankton Need Zinc to Cope with the Cold
    As part of a long-term collaboration with the JGI Algal Program, researchers studying function and activity of phytoplankton genes in polar waters have found that these algae rely on dissolved zinc to photosynthesize.

    More

    This data image shows the monthly average sea surface temperature for May 2015. Between 2013 and 2016, a large mass of unusually warm ocean water--nicknamed the blob--dominated the North Pacific, indicated here by red, pink, and yellow colors signifying temperatures as much as three degrees Celsius (five degrees Fahrenheit) higher than average. Data are from the NASA Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis product. (Courtesy NASA Physical Oceanography Distributed Active Archive Center)
    When “The Blob” Made It Hotter Under the Water
    Researchers tracked the impact of a large-scale heatwave event in the ocean known as “The Blob” as part of an approved proposal through the Community Science Program.

    More

    A plantation of poplar trees. (David Gilbert)
    Genome Insider podcast: THE Bioenergy Tree
    The US Department of Energy’s favorite tree is poplar. In this episode, hear from ORNL scientists who have uncovered remarkable genetic secrets that bring us closer to making poplar an economical and sustainable source of energy and materials.

    More

  • Data & Tools
    • IMG
    • Data Portal
    • MycoCosm
    • PhycoCosm
    • Phytozome
    • GOLD
    HPCwire Editor's Choice Award (logo crop) for Best Use of HPC in the Life Sciences
    JGI Part of Berkeley Lab Team Awarded Best Use of HPC in Life Sciences
    The HPCwire Editors Choice Award for Best Use of HPC in Life Sciences went to the Berkeley Lab team comprised of JGI and ExaBiome Project team, supported by the DOE Exascale Computing Project for MetaHipMer, an end-to-end genome assembler that supports “an unprecedented assembly of environmental microbiomes.”

    More

    With a common set of "baseline metadata," JGI users can more easily access public data sets. (Steve Wilson)
    A User-Centered Approach to Accessing JGI Data
    Reflecting a structural shift in data access, the JGI Data Portal offers a way for users to more easily access public data sets through a common set of metadata.

    More

    Phytozome portal collage
    A More Intuitive Phytozome Interface
    Phytozome v13 now hosts upwards of 250 plant genomes and provides users with the genome browsers, gene pages, search, BLAST and BioMart data warehouse interfaces they have come to rely on, with a more intuitive interface.

    More

  • User Programs
    • Calls for Proposals
    • Special Initiatives & Programs
    • Product Offerings
    • User Support
    • Policies
    • Submit a Proposal
    screencap from Amundson and Wilkins subsurface microbiome video
    Digging into Microbial Ecosystems Deep Underground
    JGI users and microbiome researchers at Colorado State University have many questions about the microbial communities deep underground, including the role viral infection may play in other natural ecosystems.

    Read more

    Yeast strains engineered for the biochemical conversion of glucose to value-added products are limited in chemical output due to growth and viability constraints. Cell extracts provide an alternative format for chemical synthesis in the absence of cell growth by isolating the soluble components of lysed cells. By separating the production of enzymes (during growth) and the biochemical production process (in cell-free reactions), this framework enables biosynthesis of diverse chemical products at volumetric productivities greater than the source strains. (Blake Rasor)
    Boosting Small Molecule Production in Super “Soup”
    Researchers supported through the Emerging Technologies Opportunity Program describe a two-pronged approach that starts with engineered yeast cells but then moves out of the cell structure into a cell-free system.

    More

    These bright green spots are fluorescently labelled bacteria from soil collected from the surface of plant roots. For reference, the scale bar at bottom right is 10 micrometers long. (Rhona Stuart)
    A Powerful Technique to Study Microbes, Now Easier
    In JGI's Genome Insider podcast: LLNL biologist Jennifer Pett-Ridge collaborated with JGI scientists through the Emerging Technologies Opportunity Program to semi-automate experiments that measure microbial activity in soil.

    More

  • News & Publications
    • News
    • Blog
    • Podcasts
    • Webinars
    • Publications
    • Newsletter
    • Logos and Templates
    • Photos
    A view of the mangroves from which the giant bacteria were sampled in Guadeloupe. (Hugo Bret)
    Giant Bacteria Found in Guadeloupe Mangroves Challenge Traditional Concepts
    Harnessing JGI and Berkeley Lab resources, researchers characterized a giant - 5,000 times bigger than most bacteria - filamentous bacterium discovered in the Caribbean mangroves.

    More

    In their approved proposal, Frederick Colwell of Oregon State University and colleagues are interested in the microbial communities that live on Alaska’s glacially dominated Copper River Delta. They’re looking at how the microbes in these high latitude wetlands, such as the Copper River Delta wetland pond shown here, cycle carbon. (Courtesy of Rick Colwell)
    Monitoring Inter-Organism Interactions Within Ecosystems
    Many of the proposals approved through JGI's annual Community Science Program call focus on harnessing genomics to developing sustainable resources for biofuels and bioproducts.

    More

    Coloring the water, the algae Phaeocystis blooms off the side of the sampling vessel, Polarstern, in the temperate region of the North Atlantic. (Katrin Schmidt)
    Climate Change Threatens Base of Polar Oceans’ Bountiful Food Webs
    As warm-adapted microbes edge polewards, they’d oust resident tiny algae. It's a trend that threatens to destabilize the delicate marine food web and change the oceans as we know them.

    More

News & Publications
Home › News Releases
Page 16 of 27« First«...10...1415161718...»Last »

October 2, 2011

Advancing Next Gen Biofuels by Turning Up the Heat on Biomass Pretreatment Processes

WALNUT CREEK, Calif.—The nation’s Renewable Fuels Standard calls for annual production of 36 billion gallons of biofuel by 2022. One of the biggest hurdles to achieving this goal lies in optimizing the multistep process involved in breaking down plant biomass and then converting it into fermentable sugars that can be refined into fuel for our… [Read More]

September 16, 2011

Tringe on Popular Science’s “Brilliant 10” List

WALNUT CREEK, Calif.—Susannah Green Tringe of the DOE Joint Genome Institute (DOE JGI) has been named one of 2011’s “Brilliant 10,” the annual list compiled by Popular Science magazine of top young researchers. In adding her name to the list, which appears in the October issue, the magazine recognized her $2.5 million grant from the… [Read More]

September 1, 2011

Up from the Depths: How Bacteria Capture Carbon in the “Twilight Zone”

WALNUT CREEK, Calif.—Understanding the flow and processing of carbon in the world’s oceans, which cover 70 percent of Earth’s surface, is central to understanding global climate cycles, with many questions remaining unanswered. Between 200 and 1,000 meters below the ocean surface exists a “twilight zone” where insufficient sunlight penetrates for microorganisms to perform photosynthesis. Despite… [Read More]

July 14, 2011

Breaking down cellulose without blasting lignin: “Dry rot” genome offers lessons for biofuel pretreatment

WALNUT CREEK, Calif.—Feared by realtors and homeowners alike, dry rot due to the fungus Serpula lacrymans causes millions of dollars worth of damage to homes and buildings around the world. This brown rot fungus’ capacity to break down the cellulose in wood led to its selection for sequencing by the U.S. Department of Energy (DOE)… [Read More]

July 1, 2011

A Microbiological “Template” for Mitigating Methane Emissions

WALNUT CREEK, Calif.—Carbon dioxide may be the most name-dropped greenhouse gas, but methane is 20 times more potent. In 2009, the U.S. Environmental Protection Agency calculated that 20 percent of the nation’s human-related methane emissions were attributable to livestock digestive processes. In Australia, livestock emissions account for 12 percent of the country’s total greenhouse gas… [Read More]

June 30, 2011

Salt-loving Microbe Provides New Enzymes for the Production of Next Gen Biofuels

WALNUT CREEK, Calif.—In order to realize the full potential of advanced biofuels that are derived from non-food sources of lignocellulosic biomass—e.g., agricultural, forestry, and municipal waste, and crops such as  poplar, switchgrass and miscanthus—new technologies that can efficiently and cost-effectively break down this biomass into simple sugars are required. Existing biomass pretreatment technologies are typically… [Read More]

May 13, 2011

Same Fungus, Different Strains: A Comparative Genomics Approach for Improved “Green” Chemical Production

WALNUT CREEK, Calif.—Fungi play key roles in nature and are valued for their great importance in industry. Consider citric acid, a key additive in several foods and pharmaceuticals produced on a large-scale basis for decades with the help of the filamentous fungus Aspergillus niger. While A. niger is an integral player in the carbon cycle,… [Read More]

May 10, 2011

JGI’s Susannah Tringe Receives Prestigious $2.5M DOE Early Career Research Award

WALNUT CREEK, Calif.—The U.S. Department of Energy (DOE) Office of Science Early Career Research Program has awarded a grant to DOE Joint Genome Institute scientist Susannah Green Tringe to conduct genomic studies of microbial communities (metagenomes) in restored wetlands around the San Francisco Bay-Delta region of California. Tringe, who heads the DOE JGI Metagenome Program,… [Read More]

May 5, 2011

Spikemoss Genome Offers New Paths for Biofuels Research–Bridges Plant Development Gap

WALNUT CREEK, Calif.— It’s not quite Christmas, but the DNA sequence of a small plant that resembles the seasonal conifers is providing biofuels researchers with information that could influence the development of candidate biofuel feedstock plants and offering botanists long-awaited insights into plant evolution. “When you burn coal, you’re burning Selaginella’s ancestors,” said Purdue University… [Read More]

May 3, 2011

Formidable Fungal Force Counters Biofuel Plant Pathogens

Researchers compared rust fungi genomes to identify how these pathogens can invade their plant hosts and to control the damage they can cause. [Read More]
Page 16 of 27« First«...10...1415161718...»Last »

More topics:

  • COVID-19 Status
  • News
  • Science Highlights
  • Blog
  • Webinars
  • CSP Plans
  • Featured Profiles
  • Careers
  • Contact Us
  • Events
  • User Meeting
  • MGM Workshops
  • Internal
  • Disclaimer
  • Credits
  • Policies
  • Emergency Info
  • Accessibility / Section 508 Statement
  • Flickr
  • LinkedIn
  • RSS
  • Twitter
  • YouTube
Lawrence Berkeley National Lab Biosciences Area
A project of the US Department of Energy, Office of Science

JGI is a DOE Office of Science User Facility managed by Lawrence Berkeley National Laboratory

© 1997-2022 The Regents of the University of California