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 Agaves are succulent monocotyledonous plants native to hot and arid environments of North 
America. Because of their adaptations to their environment, including crassulacean acid metabolism 
(CAM, a water-efficient form of photosynthesis) and existing technologies for ethanol production, 
agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for 
exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence 
datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Here, we 
present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. 
tequilana and A. deserti, from short-read RNA-seq data. Our analyses support completeness and 
accuracy of the de novo transcriptome assemblies, with each species having approximately 35,000 
protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies 
biological functions of gene families displaying sequence divergence in agave species. Additionally, 
we use RNA-seq data to gain insights into biological functions along the A. deserti juvenile leaf 
proximal-distal axis. Our work presents a foundation for further investigation of agave biology and 
their improvement for bioenergy development.
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AGAVE TRANSCRIPTOME ASSEMBLIES FROM DEEP RNA-seq

COMPARISON OF AGAVE DE NOVO ASSEMBLIES

FIGURE 3: Comparison of the de novo 
Agave transcriptome assemblies 

(A) Comparisons of the A. tequilana de 
novo Rnnotator assembly to error 
corrected Pacific Biosciences subreads, 
82 GenBank A. tequilana sequences, 
and an additional A. tequilana dataset 
from McKain et al. 2012. [4] 

(B) Comparisons between the A. 
tequilana and A. deserti de novo 
Rnnotator assemblies. 

(C) Histograms of the fraction of aligned 
sequence lengths between A. deserti 
and A. tequilana. 

Symbol || separates query sequence 
dataset from subject sequence dataset. 
Total number of sequences (n) is noted in 
each bar chart, total number of 
sequences in alignment classes are 
noted above bar.

FIGURE 4: Proteomic comparison of agaves to other plant species 

(A) Venn diagram of BLASTP-based one-to-one reciprocal best hit proteins 
shared between A. deserti and A. tequilana. 

(B) Venn diagram of OrthoMCL-defined protein families shared between 
agaves. 

(C) Edwards-Venn diagram of OrthoMCL-defined plant orthologous-group 
protein families (Plant OGs) shared between agave and 4 additional 
monocotyledonous plant species. Shape and color used for each species 
is at the right with the total number of Plant OGs within each species.

FIGURE 5: Transcriptomic analysis of the A. deserti 
leaf proximal-distal axis. 

(A) One of the A. deserti leaves used for analysis, 
indicating proximal-distal (PD) sections 1–4. 

(B) Six major K-means clusters of gene expression 
along the PD axis. Clusters are manually grouped by 
highest expression in proximal, medial, or distal tissues. 
Blue lines connect mean z-scaled RPKM values, 
shaded areas represent the 25th and 75th percentiles, 
red lines indicate standard error at each mean. Green 
text beneath each cluster denotes the description of the 
most significantly enriched GO term in each cluster. 

(C, D) Heatmaps of composite gene expression for 
indicated biological processes along the leaf PD axis. 

PROTEOMIC ANALYSES SUPPORT COMPREHENSIVE 
AGAVE TRANSCRIPTOME ASSEMBLIES

PROFILING OF THE A. DESERTI LEAF HIGHLIGHTS 
REGIONS CRITICAL TO DEVELOPMENT AND PHOTOSYNTHESIS

FIGURE 2: A. tequilana, A. deserti, and their 
respective transcriptomes

(A) Cultivated A. tequilana in Jalisco, Mexico. 

(B) A. deserti (foreground) in natural habitat, 
Riverside County, California, USA. 

(C) Plot of the fraction of unique 25-mers over 
indicated read depth (log2 scale). 

(D) Density plot of GC content of agave 
transcript contigs vs. contigs from 
contamination and commensal organisms. 

(E) Density plots of A. deserti and A. tequilana 
transcript lengths. Note log10 scale. Peaks at 
150 and 250 nt represent single reads or 
paired-end reads, respectively, that were not 
assembled into larger contigs. 

(F) Density plot of locus RPKM values for 
coding (dark shading) and non-coding (light 
shading) loci.
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OVERVIEW OF AGAVE TRANSCRIPTOME ASSEMBLIES

CAM PHOTOSYNTHESIS, ARID ENVIRONMENTS, AND BIOENERGY
Agave species are adapted to their native habitat in arid regions of Mexico and the United States. Agave thus 
holds promise as a biofuel feedstock [1,2], capable of growing on marginal lands where other proposed bioenergy 
plants cannot. The ability of agaves to withstand hot and arid conditions relies upon crassulacean acid 
metabolism (CAM)—a specialized form of photosynthesis allowing agaves to keep leaf stomata (pores) closed 
during the hot day, minimizing water loss through evapotranspiration.  
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FIGURE 1: Agaves and CAM biology

(A) Agave tequilana cultivated in Mexico.

(B) Semi-arid regions of the United States 
(brown) are unsuitable for cultivation of other 
bioenergy plants, which require more temperate 
regions (green). Most Agave species are 
adapted to semi-arid regions in Mexico and the 
extreme southwestern USA (purple). 

(C) Crassulacean Acid Metabolism (CAM). CO2
enters plant cells at night, joins with a 3-carbon 
molecule (C3) and is stored in the vacuole as a 
4-carbon molecule (C4). During the day, C4
molecules diffuse out of the vacuole, and CO2 is 
relased and assimilated into sugar in the 
chloroplast.

Comparison of inputs (water and 
nitrogen) and outputs (biomass and 
ethanol) of agaves and other biofuel 
feedstock species. Though agaves 
are harvested at several years of age, 
their annualized growth rate is on par 
with Miscanthus. Table is modified 
from reference [2].
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To provide sequence resources for 
the Agave research community, we 
built de novo transcriptomes of Agave 
tequilana and Agave deserti from 
deep Illumina RNA-seq data. 
Sequences were assembled by 
Rnnotator [3], a de novo 
transcriptome assembly pipeline.
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suggest the Agave de novo 
assemblies are comprehensive 
and accurate.

Proteome comparisons between Agave species and additional 
monocot species suggest the majority of Agave proteins are 
conserved across taxa. We can also identify protein families 
specific to agaves.

Agaves spend the majority of their lives as 
compact rosettes, thus leaves are important 
organs in which to study Agave 
developmental and bioenergetic processes.


