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A) SNP dynamics in Chlorobium-1280  D) Gene gain/loss in Chlorobium-1280 

B) SNP dynamics in Methylotenera-124 E) Gene gain/loss in Methylotenera-124 

C) SNP dynamics in Methylotenera-330  F) Gene gain/loss in Methylotenera-330  
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Figure 3: Temporal trends in SNP allele frequencies and gene content in natural Chlorobium and 
Methylotenera populations. Broad patterns were determined by combining metagenomic mapping results 
from all 45 time points into eight seasonal time periods. 
 
• Allele Frequencies (A-C): SNPs are arrayed along the y-axis, one row equals one SNP locus, with the total 

number indicated in parentheses.  SNP color indicates allele frequency, i.e. the percentage of 
metagenomic reads supporting the reference allele during each time period. SNP loci dominated by a 
single allele appear either as red (few reads matching reference base) or blue (most reads matching 
reference base). SNPs were distributed evenly throughout each genome (data not shown).  
 

• Gene Gain and Loss (D-F): Relative abundance of genes gained or lost from Chlorobium and 
Methylotenera populations. Copy number per cell determined as coverage of a gene divided by median 
coverage of all other genes in genome.  Gene locus id’s are indicated in the legends. Two sets of 
contiguous genes were gained and lost from Methylotenera-330, and genes in each set were plotted with 
the same line color.   

ABSTRACT 
Multiple evolutionary models have been proposed to explain the formation of genetically 
and ecologically distinct bacterial groups. Time-series metagenomics enables direct 
observation of evolutionary processes in natural populations, and if applied over a 
sufficiently long time frame, this approach could capture events such as gene-specific or 
genome-wide selective sweeps.  Direct observations of either process could help resolve 
how distinct groups form in natural microbial assemblages. Here, from a three-year 
metagenomic study of a freshwater lake, we explore changes in single nucleotide 
polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of 
Chlorobiaceae and Methylophilaceae.  SNP analyses revealed substantial genetic 
heterogeneity within these populations, although the degree of heterogeneity varied 
considerably among closely related, co-occurring Methylophilaceae populations.  SNP 
allele frequencies, as well as the relative abundance of certain genes, changed 
dramatically over time in each population.  Interestingly, SNP diversity was purged at 
nearly every genome position in one of the Chlorobiaceae populations over the course of 
three years, while at the same time multiple genes either swept through or were swept 
from this population.  These patterns were consistent with a genome-wide selective 
sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously 
observed in natural populations.   
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APPROACH 
• Shotgun sequenced freshwater community at 45 times points from 2007-2009 
• Assembled 2 genomes from Chlorobiaceae and 2 from Methylophilaceae 
• Mapped metagenomic reads to genomes at >95% nucleotide identity to identify:  
             1)  ‘sequence-discrete’ populations 
             2)  Allele frequencies at SNP loci  
             3)  Relative gene abundance within populations 
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A) SNP dynamics in Chlorobium-1280  
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B) SNP dynamics in Chlorobium-66  
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Figure 1:  Phylogenetic relationships of reconstructed Chlorobiaceae and Methylophilacea genomes. Maximum 
likelihood tree of 27 conserved marker genes extracted using Phylosift.  Bootstrap values generated from 100 
replicates.  Scale bar indicates substitutions per site. Grey boxes identify reconstructed genomes from this study. 

Figure 2: Temporal contig coverage patterns. Each contig is represented by a different colored 
line. The tight synchronization of contig coverage within each genome bin indicates these 
contigs were derived from the same organism.  

2007 2008 2009 

Figure 5:  Temporal trends of SNP allele frequencies in Chlorobium-1280 (A) and Chlorobium-66 (B) populations.  
Allele frequencies were calculated per year due to coverage limitations in the less abundant Chlorobium-66 
population.  Coverage of the higher abundance Chlorobium-1280 was informatically reduced to comparable 
levels, thus the total number of detected SNPs was lower than reported when all data were used (see Figure 3).  
The genome-wide purge of SNP diversity in Chlorobium-1280 was still apparent with lower coverage and 
temporal resolution.  In contrast, Chlorobium-66 did not experience a similar purge; only 414 of the SNP loci had 
an allele frequency >95% in 2009. 
 

Figure 4:  Metagenomic read recruitment to Chlorobium genomes. 
   

• ‘Sequence-discrete’ populations revealed by reads that mapped with >95% nucleotide identity 
 

• Closely related, co-occurring populations separated by coverage discontinuity at ~95% identity  
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CONCLUSIONS 
 

• The dramatic loss of SNP diversity and the patterns of gene gain and loss in the 
Chlorobium-1280 population were consistent with a genome-wide selective sweep. 
 

• Methylotenera-124 population may have experienced a ‘soft sweep,’ whereas most SNP 
diversity in Methylotenera-330 population was lost prior to the start of this study. 
 

• ‘Sequence-discrete’ populations behave like theoretically defined ‘ecotypes’ 
 

• Displacement of many co-existing strains by a single strain/lineage within the same 
population implies that all population members shared the same ecological niche. 
 

• Closely related, co-occurring sequence-discrete populations experience sweeps 
independently 
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